Skip to main content
Log in

Effects of rare earth elements on the environment and human health: A literature review

  • Mini review
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

REEs are a group of metals comprised of yttrium, fourteen lanthanide elements, and scandium, which have been called ‘industrial vitamins’ and a ‘treasury’ of novel materials due to their dominant role in technical progress and in the development of traditional industries. Despite the growing interest, information that has become available over the last two decades regarding RREs is relatively premature and scarce, which has led to the current controversy regarding the health benefits vs toxic effects of these materials. There are many environmental and health issues associated the production, processing, and utilization of REEs. This review offers an examination of the roles of REEs in the onset of cellular oxidative stress in reference to the impact of REE exposure to cells, animals, and plants, in order to explain disease and occupational poisoning of local residents, water pollution, and farmland destruction. Conversely, a body of evidence has shown REE-associated antioxidant effects in the treatment of many diseases. The content herein is aimed at presenting the recent and pending developments in the field of REE with respect to environmental and human health implications. Multi-faceted updates on the roles of REEs focusing on different organisms and exposure routes, and several issues regarding environmental and biological research, are discussed. The current gaps in information raise a number of open questions that deserve ad hoc investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atwood, D. A. in The Rare Earth Elements: Fundamentals and Applications (Wiley, USA, 2012).

    Google Scholar 

  2. Rare earths, http://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/myb1-2013-raree.pdf (2013).

  3. Rare Earth Elements: The Global Supply Chain, https://archive.org/details/R41347RareEarthElementsThe GlobalSupplyChain-crs (2013).

  4. Izyumov, A. & Plaksin, G. in Cerium: Molecular Structure, Technological Applications and Health Effects (Nova Science Publishers, USA, 2013).

    Google Scholar 

  5. Rare Earth Elements: A Review of Production, Processing, Recycling, and Associated Environmental Issues (EPA 600/R-12/572), www.epa.gov/ord (2012).

  6. Zepf, V. in A New Approach to the Nexus of Supply, Demand and Use: Exemplified along the Use of Neodymium in Permanent Magnets (Springer Theses ©, Germany, 2013).

    Google Scholar 

  7. Du, X. & Graedel, T. E. Uncovering the global life cycles of the rare earth elements. Sci. Rep. 1, 145 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang, L., Huang, X. & Zhou, Q. Protective effect of rare earth against oxidative stress under ultraviolet-B radiation. Biol. Trace Elem. Res. 128, 82–93 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Bellin, M. F. & Van Der Molen, A. Extracellular gadolinium-based contrast media: an overview. Eur. J. Radiol., 66, 160–167 (2008).

    Article  PubMed  Google Scholar 

  10. Corma, A., Atienzar, P., Garcia, H. & Chane-Ching, J. Y. Hierarchically mesostructured doped CeO2 with potential for solar cell use. Nature Mater. 3, 394–397 (2004).

    Article  CAS  Google Scholar 

  11. Khan, S. B., Faisal, M., Rahman, M. M. & Jamal, A. Exploration of CeO2 nanoparticles as a chemi-sensor and photo-catalyst for environmental applications. Sci. Total Environ. 409, 2987–2992 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Rare Earth Elements: A Review of Production, Processing, Recycling, and Associated Environmental Issues, EPA 600/R-12/572, www.epa.gov/ord (2012).

  13. Wu, J. et al. Lanþhanum induced primary neuronal apoptosis through mitochondrial dysfunction modulated by Ca2þ and Bcl-2 family. Biol. Trace Elem. Res. 152, 125–134 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Giri, S. et al. Nanoceria: a rare-earth nanoparticle as a novel anti-angiogenic therapeutic agent in ovarian cancer. PLoS One 8, e54578 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pagano, G., Guida, M., Tommasi, F. & Oral, R. Health effects and toxicity mechanisms of rare earth elements -Knowledge gaps and research prospects. Ecotoxicol. Environ. Saf. 115C, 40–48 (2015).

    Article  Google Scholar 

  16. Pagano, G. et al. Human exposures to rare earth elements: State of art and research priorities. Environ. Res. 142, 215–220 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Rim, K. T., Koo, K. H. & Park, J. S. Toxicological evaluations of rare earths and their health impacts to workers: A literature review. Saf. Health Work 4, 12–26 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peng, R. L, Pan, X. C. & Xie, Q. Relationship of the hair content of rare earth elements in young children aged 0 to 3 years to that in their mothers living in a rare earth mining area of Jiangxi. Zhonghua Yu Fang Yi Xue Za Zhi 37, 20–22 (2003).

    CAS  PubMed  Google Scholar 

  19. Tong, S. L. et al. Distribution characteristics of rare earth elements in children’s scalp hair from a rare earths mining area in southern China. J. Environ. Sci._Health A Tox. Hazard Subst. Environ. Eng. 39, 2517–2532 (2004).

    Article  PubMed  Google Scholar 

  20. Liang, C. & Wang, W. Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain. Environ. Sci. Pollut. Res. Int. 20, 8182–8191 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, L., Wang, W., Zhou, Q. & Huang, X. Combined effects of lanthanum (III) chloride and acid rain on photosynthetic parameters in rice. Chemosphere 112, 355–361 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Wen, K., Liang, C., Wang, L., Hu, G. & Zhou, Q. Combined effects of lanthanum ion and acid rain on growth, photosynthesis and chloroplast ultrastructure in soybean seedlings. Chemosphere 84, 601–608 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Bustamante, P. & Miramand, P. Subcellular and body distributions of 17 trace elements in the variegated scallop Chlamys varia from the French coast of the Bay of Biscay. Sci. Total Environ. 337, 59–73 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Herrmann, H., Nolde, J., Berger, S. & Heise, S. Aquatic ecotoxicity of lanthanum-A review and an attempt to derive water and sediment quality criteria. Ecotoxicol. Environ. Saf. 124, 213–238 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Cassee, F. R. et al. The biological effects of subacute inhalation of diesel exhaust following addition of cerium oxide nanoparticles in atherosclerosis-prone mice. Environ. Res. 115, 1–10 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cassee, F. R. et al. Exposure, health and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a fuel additive. Crit. Rev. Toxicol. 41, 213–229 (2011).

    Article  PubMed  Google Scholar 

  27. Ma, J. Y. et al. Interactive effects of cerium oxide and diesel exhaust nanoparticles on inducing pulmonary fibrosis. Toxicol. Appl. Pharmacol. 278, 135–147 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Snow, S. J. et al. Inhaled diesel emissions generated with cerium oxide nanoparticle fuel additive induce adverse pulmonary and systemic effects. Toxicol. Sci. 142, 403–417 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yoon, H. K. et al. Dendriform pulmonary ossification in patient with rare earth pneumoconiosis. Thorax 60, 701–703 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ramalho, J. et al. Gadolinium-Based Contrast Agent Accumulation and Toxicity: An Update. Am. J. Neuroradiol. 37, 1192–1198 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Thomsen, H. S. Nephrogenic systemic fibrosis: A serious late adverse reaction to gadodiamide. Eur. Radiol. 16, 2619–2621 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  32. He, M. L., Ranz, D. & Rambeck, W. A. Study on the performance enhancing effect of rare earth elements in growing and finishing pigs. J. Anim. Physiol. Anim. Nutr. 85, 263–270 (2001).

    Article  CAS  Google Scholar 

  33. Pang, X., Li, D. & Peng, A. Application of rare-earth elements in the agriculture of China and its environmental behavior in soil. Environ. Sci. Pollut. Res. Int. 9, 143–148 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Rare Earth Elements in Agriculture with Emphasis on Animal Husbandry, https://edoc.ub.uni-muenchen.de/5936/1/Redling_Kerstin.pdf (2006).

  35. Carpenter, D., Boutin, C., Allison, J. E., Parsons, J. L. & Ellis, D. M. Uptake and effects of six rare earth elements (REEs) on selected native and crop species growing in contaminated soils. PLoS One 10, e0129936 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Goecke, F. et al. Use of lanthanides to alleviate the effects of metal ion-deficiency in Desmodesmus quadricauda (Sphaeropleales, Chlorophyta). Front. Microbiol. 6, 2 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jenkins, W. et al. Fibroblast response to lanthanoid metal ion stimulation: potential contribution to fibrotic tissue injury. Biol. Trace Elem. Res. 144, 621–635 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, D. et al. The dual-effects of LaCl3 on the proliferation, osteogenic differentiation, and mineralization of MC3T3-E1 cells. Biol. Trace Elem. Res. 150, 433–440 (2012).

    Article  PubMed  Google Scholar 

  39. Pol, A. et al. Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ. Microbiol. 16, 255–264 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. McDonald, J. W. et al. Rare earth (cerium oxide) pneumoconiosis: analytical scanning electron microscopy and literature review. Mod. Pathol. 8, 859–865 (1995).

    CAS  PubMed  Google Scholar 

  41. Huang, P. et al. Effects of lanthanum, cerium, and neodymium on the nuclei and mitochondria of hepathocytes: accumulation and oxidative damage. Environ. Toxicol. Pharmacol. 31, 25–32 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Xia, Q. et al. Gadolinium-induced oxidative stress triggers endoplasmic reticulum stress in rat cortical neurons. J. Neurochem. 117, 38–47 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Hong, J. et al. Pulmonary toxicity in mice following exposure to cerium chloride. Biol. Trace Elem. Res. 159, 269–277 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Liang, T., Li, K. & Wang, L. State of rare earth elements in different environmental components in mining areas of China. Environ. Monit. Assess. 186, 1499–1513 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Zhao, L. et al. Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACSnano 6, 9615–9622 (2012).

    CAS  Google Scholar 

  46. Pirmohamed, T. et al. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 46, 2736–2738 (2010).

    Article  CAS  Google Scholar 

  47. Xu, C. & Qu, X. Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Materials 6, e90 (2014).

    Article  CAS  Google Scholar 

  48. Sholkovitz, E. R., Landing, W. M. & Lewis, L. Ocean particle chemistry: the fractionation of rare earth elements between suspended particles and seawater. Geochim. Cosmochim. Acta 58, 1567–1579 (1994).

    Article  CAS  Google Scholar 

  49. Karakoti, A., Singh, S., Dowding, J. M., Seal, S. & Self, W. T. Redox-active radical scavenging nanomaterials. Chem. Soc. Rev. 39, 4422–4432 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Oral, R. et al. Cytogenetic and developmental toxicity of cerium and lanthanum to sea urchin embryos. Chemosphere 81, 194–198 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Pagano, G. et al. Comparative toxicities of selected rare earth elements: Sea urchin embryogenesis and fertilization damage with redox and cytogenetic effects. Environ. Res. 147, 453–460 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Park, E.-J., Choi, J., Park, Y.-K. & Park, K. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicol. 245, 90–100 (2008).

    Article  CAS  Google Scholar 

  53. Calabrese, E. J. Hormesis is central to toxicology, pharmacology and risk assessment. Hum. Exp. Toxicol. 29, 249–261 (2010).

    Article  PubMed  Google Scholar 

  54. Calabrese, E. J. Hormetic mechanisms. Crit. Rev. Toxicol. 43, 580–606 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Pagano, G., Guida, M., Tommasi, F. & Oral, R. Health effects and toxicity mechanisms of rare earth elements Knowledge gaps and research prospects. Ecotoxicol. Environ. Saf. 115, 40–48 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Nel, A., Xia, T., Madler, L. & Li, N. Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Oberdorster, G., Oberdorster, E. & Oberdorster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113, 823–839 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Baer, D. R. et al. Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities. J. Vac. Sci. Technol. A, 31, 50820 (2013).

    Article  PubMed  Google Scholar 

  59. Karakoti, A. et al. Redox-active radical scavenging nanomaterials. Chem. Soc. Rev. 39, 4422–4432 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Korsvik, C., Patil, S., Seal, S. & Self, W. T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. (Camb), 10, 1056–1058 (2007).

    Article  Google Scholar 

  61. Lee, S. S. et al. Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating. ACS Nano 7, 9693–9703 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Pirmohamed, T. et al. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. (Camb) 46, 2736–2738 (2010).

    Article  CAS  Google Scholar 

  63. Wong, L. L. et al. Defining the Catalytic Activity of Nanoceria in the P23H-1 Rat, a Photoreceptor Degeneration Model. PLoS One 10, e0121977 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Caputo, F., De Nicola, M. & Ghibelli, L. Pharmacological potential of bioactive engineered nanomaterials. Biochemical Pharmacology 92, 112–130 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Wong, L. L. & McGinnis, J. F. Nanoceria as bona fide catalytic antioxidants in medicine: what we know and what we want to know. Adv. Exp. Med. Biol. 801, 821–828 (2014).

    Article  PubMed  Google Scholar 

  66. Halliwell, B. & Gutteridge, J. M. C. in Cellular responses to oxidative stress: adaptation, damage, repair, senescence and death, Free Radicals in Biology and Medicine. 4th Edn (Oxford University Press, USA, 2007).

    Google Scholar 

  67. Assay Guidance Mannual, https://www.ncbi.nlm.nih. gov/books/NBK144065/pdf/Bookshelf_NBK144065. pdf (2016).

  68. Cell-permeant 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA), https://www.thermofisher.com/order/catalog/product/D399 (2015).

  69. Rothen-Rutishauser, B. et al. Direct combination of nanoparticle fabrication and exposure to lung cell cultures in a closed setup as a method to simulate accidental nanoparticle exposure of humans. Environ. Sci. Technol. 43, 2634–2640 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Das, M. et al. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 28, 1918–1925 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Szymanski, C. J. et al. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles. Biomaterials 62, 147–154 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Drescher, D. & Kneipp, J. Nanomaterials in complex biological systems: insights from Raman spectroscopy. Chem. Soc. Rev. 41, 5780–5799 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Keating, M. E. & Byrne, H. J. Raman spectroscopy in nanomedicine: current status and future perspective. Nanomedicine (Lond) 8, 1335–1351 (2013).

    Article  CAS  Google Scholar 

  74. Das, S. et al. Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine (Lond), 8, 1483–1508 (2013).

    Article  CAS  Google Scholar 

  75. Pierscionek, B. K. et al. Nanoceria have no genotoxic effect on human lens epithelial cells. Nanotechnology 21, 035102 (2010).

    Article  PubMed  Google Scholar 

  76. Schubert, D., Dargusch, R., Raitano, J. & Chan, S. W. Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem. Biophys. Res. Commun. 342, 86–91 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Wong, L.L. & McGinnis, J. F. Nanoceria as bona fide catalytic antioxidants in medicine: what we know and what we want to know. Adv. Exp. Med. Biol. 801, 821–828 (2014).

    Article  PubMed  Google Scholar 

  78. Schulz, H. Über Hefegifte, Pflügers Archiv für die gesamte Physiologie des Menschen und der Tiere 42, 517–541 (1888).

    Article  Google Scholar 

  79. Calabrese, E. J. Hormetic mechanisms. Crit. Rev. Toxicol. 43, 580–586 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Stebbing, A. R. Hormesis-the stimulation of growth by low levels of inhibitors. Sci. Total Environ. 22, 213–234 (1982).

    Article  CAS  PubMed  Google Scholar 

  81. Cai, X., Seal, S. & McGinnis, J. F. Sustained inhibition of neovascularization in vldlr-/-mice following intravitreal injection of cerium oxide nanoparticles and the role of the ASK1-P38/JNK-NF-kappaB pathway. Biomaterials 35, 249–258 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. von Montfort, C., Alili, L., Teuber-Hanselmann, S. & Brenneisen, P. Redox-active cerium oxide nanoparticles protect human dermal fibroblasts from PQ-induced damage. Redox Biol. 4, 1–5 (2015).

    Article  Google Scholar 

  83. Park, E. J., Choi, J., Park, Y. K. & Park, K. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 245, 90–100 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Lee, T. L., Raitano, J. M., Rennert, O. M., Chan, S. W. & Chan, W. Y. Accessing the genomic effects of naked nanoceria in murine neuronal cells. Nanomedicine 8, 599–608 (2012).

    CAS  PubMed  Google Scholar 

  85. Ciofani, G., Genchi, G. G., Mazzolai, B. & Mattoli, V. Transcriptional profile of genes involved in oxidative stress and antioxidant defense in PC12 cells following treatment with cerium oxide nanoparticles. Biochim. Biophys. Acta 1840, 495–506 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Ciofani, G. et al. Effects of cerium oxide nanoparticles on PC12 neuronal-like cells: proliferation, differentiation, and dopamine secretion. Pharm. Res. 30, 2133–2145 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Vieira, H. L., Alves, P. M. & Vercelli, A. Modulation of neuronal stem cell differentiation by hypoxia and reactive oxygen species. Prog. Neurobiol. 93, 444–455 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Das, S. et al. The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in intracellular environments. Biomaterials 33, 7746–7755 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Majmundar, A. J., Wong, W. J. & Simon, M. C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40, 294–309 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Muller, B. A. & Dhalla, N. S. Mechanisms of the beneficial actions of ischemic preconditioning on subcellular remodeling in ischemic-reperfused heart. Curr. Cardiol. Rev., 6, 255–264 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Taek Rim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rim, KT. Effects of rare earth elements on the environment and human health: A literature review. Toxicol. Environ. Health Sci. 8, 189–200 (2016). https://doi.org/10.1007/s13530-016-0276-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-016-0276-y

Keywords

Navigation