Skip to main content
Log in

Physarum wires: Self-growing self-repairing smart wires made from slime mould

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Purpose

We report experimental laboratory studies on developing conductive pathways, or wires, using protoplasmic tubes of plasmodium of acellular slime mould Physarum polycephalum.

Methods

Given two pins to be connected by a wire, we place a piece of slime mould on one pin and an attractant on another pin. Physarum propagates towards the attract and thus connects the pins with a protoplasmic tube. A protoplasmic tube is conductive, can survive substantial over-voltage and can be used to transfer electrical current to lightning and actuating devices.

Results

In experiments we show how to route Physarum wires with chemoattractants and electrical fields. We demonstrate that Physarum wire can be grown on almost bare breadboards and on top of electronic circuits. The Physarum wires can be insulated with a silicon oil without loss of functionality. We show that a Physarum wire selfheals: end of a cut wire merge together and restore the conductive pathway in several hours after being cut.

Conclusions

Results presented will be used in future designs of self-growing wetware circuits and devices, and integration of slime mould electronics into unconventional bio-hybrid systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nakagaki T, Yamada H, Toth A. Maze-solving by an amoeboid organism. Nature. 2000; 407:470.

    Article  Google Scholar 

  2. Adamatzky A. Physarum Machines. World Scientific; 2010.

    Google Scholar 

  3. Nakagaki T, Yamada H, Toth A. Path finding by tube morphogenesis in an amoeboid organism. Biophys Chem. 2001; 92:47–52.

    Article  Google Scholar 

  4. Nakagaki T, Iima M, Ueda T, Nishiura Y, Saigusa T, Tero A, Kobayashi R, Showalter K. Minimum-risk path finding by an adaptive amoeba network. Phys Rev Lett. 2007; 99:068104.

    Article  Google Scholar 

  5. Adamatzky A. Developing proximity graphs by Physarum Polycephalum: does the plasmodium follow Toussaint hierarchy? Parallel Process Lett. 2008; 19:105–127.

    Article  MathSciNet  Google Scholar 

  6. Shirakawa T, Adamatzky A, Gunji Y-P, Miyake Y. On simultaneous construction of Voronoi diagram and Delaunay triangulation by Physarum polycephalum. Int J Bifurcat Chaos. 2009; 9:3109–3117.

    Article  Google Scholar 

  7. Tsuda S, Aono M, Gunji YP. Robust and emergent Physarumcomputing. Biosystems. 2004; 73:45–55.

    Article  Google Scholar 

  8. Adamatzky A. Slime mould logical gates, arXiv:1005.2301v1 [nlin.PS]. 2009.

    Google Scholar 

  9. Schumann A, Adamatzky A. Physarum spatial logic. New Math Nat Comput. 2011; 7:483–498.

    Article  MATH  MathSciNet  Google Scholar 

  10. Adamatzky A, Erokhin V, Grube M, Schubert T, Schumann A. Physarum chip project: growing computers from slime mould. Int J Unconventional Computing. 2012; 8:319–323.

    Google Scholar 

  11. Adamatzky A. Slime mould tactile sensor. Sensor Actuat B 2013. In Press.

    Google Scholar 

  12. De Lacy Costello B, Adamatzky A. Assessing the chemotaxis behavior of Physarum Polycephalum to a range of simple volatile organic chemicals. Commun Integr Biol. 2013; 6:5, e25030.

    Article  Google Scholar 

  13. Whiting JGH, De Lacy Costelo BPJ, Adamatzky AI. Mapping chemical inputs onto electrical potential dynamics of Physarum Polycephalum. Sensor Actuat B-Chem. 2014; 191:844–853.

    Article  Google Scholar 

  14. Gale E, Adamatzky A, De Lacy Costello B. Are slime moulds living memristors? 2013. arXiv:1306.3414 [cs.ET]

    Google Scholar 

  15. Wang H, Wang L-J, Shi Z-F, Guo Y, Cao X-P, Zhang H-L. Application of self-assembled molecular wires monolayers for electroanalysis of dopamine. Electrochem Commun. 2006; 8:1779–1783.

    Article  Google Scholar 

  16. Paul F, Lapinte C. Organometallic molecular wires and other nanoscale-sized devices: an approach using the organoiron (dppe)CpFe building block. Coordin Chem Rev. 1998; 178–180:431–509.

    Article  Google Scholar 

  17. Beratan DN, Priyadarshy S, Risser SM. DNA: insulator or wire? Chem Biol. 1997; 4:3–8.

    Article  Google Scholar 

  18. Katz E. Bioelectronics. In: Bassani F, Liedl GL, Wyder P. (Eds.), Encyclopedia of Condensed Matter Physics. Oxford; 2005. pp. 85–98.

    Chapter  Google Scholar 

  19. Berry V, Saraf RF. Self-assembly of nanoparticles on live bacterium: an avenue to fabricate electronic devices. Angew Chem. 2005; 117:6826–6831.

    Article  Google Scholar 

  20. Cingolani E, Ionta V, Giacomello A, Marbán E, Cho HC. Creation of a biological wire using cell-targeted paramagnetic beads. Biophys J. 2012; 102:416.

    Article  Google Scholar 

  21. Sabah A, Dakua I, Kumar P, Mohammed WS, Dutta J. Growth of templated gold microwires by self organization of colloids on Aspergillus Niger. Digest J Nanomater Biostructures. 2012; 7:583–591.

    Google Scholar 

  22. Geddes LA, Baker LE. The specific resistance of biological material — A compendium of data for the biomedical engineer and physiologist. Med Biol Eng. 1967; 5:271–293.

    Article  Google Scholar 

  23. Seifriz W. A theory of protoplasmic streaming. Science. 1937; 86:397–402.

    Article  Google Scholar 

  24. Heilbrunn LV, Daugherty K. The electric charge of protoplasmic colloids. Physiol Zool. 1939; 12:1–12.

    Google Scholar 

  25. Meyer R, Stockem W. Studies on microplasmodia of Physarum polycephalum V: Electrical activity of different types of microplasmodia and macroplasmodia. Cell Biol Int Rep. 1979; 3:321–330.

    Article  Google Scholar 

  26. Fingerle J, Gradmann D. Electrical properties of the plasma membrane of microplasmodia of Physarum polycephalum. J Membr Biol. 1982; 68:67–77.

    Article  Google Scholar 

  27. Iwamura T. Correlations between protoplasmic streaming and bioelectric potential of a slime mould, Physarum polycephalum. Bot Mag. 1949; 62:126–131.

    Google Scholar 

  28. Kamiya N, Abe S. Bioelectric phenomena in the myxomycete plasmodium and their relation to protoplasmic flow. J Colloid Sci. 1950; 5:149–163.

    Article  Google Scholar 

  29. Kashimoto U. Rhythmicity in the protoplasmic streaming of a slime mold, Physarum Polycephalum. I. A statistical analysis of the electric potential rhythm. J Gen Physiol. 1958; 41:1205–1222.

    Article  Google Scholar 

  30. Acheubach U, Wohlfarth-Bottermann KE. Synchronization and signal transmission in protoplasmic strands of Physarum. Planta. 1981; 151:574–583.

    Article  Google Scholar 

  31. Hader DP, Schreckenbach T. Phototactic orientation in plasmodia of the acellular slime mold, Physarum polycephalum. Plant Cell Physiol. 1984; 25(1):55.

    Google Scholar 

  32. Knowles DJ, Carlile MJ. The chemotactic response of plasmodia of the myxomycete Physarum polycephalum to sugars and related compounds. J Gen Microbiol. 1978; 108:17.

    Article  Google Scholar 

  33. Wolf R, Niemuth J, Sauer H. Thermotaxis and protoplasmic oscillations in Physarum plasmodia analysed in a novel device generating stable linear temperature gradients. Protoplasma. 1997; 197:121–131.

    Article  Google Scholar 

  34. Tsuda S, Jones J, Adamatzky A, Mills J. Routing Physarum with electrical flow/current. Int J Nanotechnol Mol Comput. 2011; 3:2.

    Article  Google Scholar 

  35. Adamatzky A., Simulating strange attraction of acellular slime mould Physarum polycephalum to herbal tablets. Math Comput Modelling. 2012; 55:884–900.

    Article  Google Scholar 

  36. Adamatzky A. Steering plasmodium with light: dynamical programming of Physarum machine. Arxiv preprint arXiv:0908.0850.2009.

  37. Anderson JD. Galvanotaxis of slime mold. J Gen Physiol. 1951; 35:1.

    Article  Google Scholar 

  38. Anderson JD. Potassium loss during galvanotaxis of slime mold. J Gen Physiol. 1962; 45:567–574.

    Article  Google Scholar 

  39. Merck. The MERCK Index. An Encyclopedia of Chemicals, Drugs, and Biologicals. 12th ed. Whitehouse Station, NJ. MERCK and CO. Inc.; 1996.

    Google Scholar 

  40. Stewart PA, Stewart BT. Protoplasmic streaming and the fine structure of slime mold plasmodia. Exp Cell Res. 1959; 18:374–377.

    Article  Google Scholar 

  41. Allen RD, Pitts WR, Speir D, Brault J. Shuttle-streaming: synchronization with heart production in slime mold. Science. 1963; 13:1485–1487.

    Article  Google Scholar 

  42. Newton SA, Ford Jr NC, Langley KH, Sattelle DB. Laser lightscattering analysis of protoplasmic streaming in the slime mold Physarum polycephalum. Biochim Biophys Acta. 1977; 496:212–224.

    Article  Google Scholar 

  43. Hulsmann N, Wohlfarth-Bottermann KE. Spatio-temporal relationships between protoplasmic streaming and contraction activities in plasmodial veins of Physarum polycephalum. Cytobiologie. 1978; 17:317–334.

    Google Scholar 

  44. Adamatzky A. Manipulating substances with Physarum polycephalum. Mater Sci Eng. 2010; C30:1211–1220.

    Article  Google Scholar 

  45. Mayne R, Patton D, Costello B, Adamatzky A, Patton RC. On the internalisation, intraplasmodial carriage and excretion of metallic nanoparticles in the slime mould Physarum polycephalum. arXiv:1310.6078 [cs.ET]. 2013.

    Google Scholar 

  46. Li HS, Stolz DB, Romero G. Characterization of endocytic vesicles using magnetic microbeads coated with signalling ligands. Traffic. 2005; 6:324–334.

    Article  Google Scholar 

  47. Bandmann V, Mller JD, Köhler T, Homann U. Uptake of fluorescent nano beads into BY2 cells involves clathrindependent and clathrin-independent endocytosis. FEBS Lett. 2012; 586:3626–3632.

    Article  Google Scholar 

  48. Tian B, Liu J, Dvir T, Jin L, Tsui JH, Qing Q, Suo Z, Langer R, Kohane DS, Lieber CM. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nature Mater. 2012; 11:986–9894.

    Article  Google Scholar 

  49. Barbic M. Magnetic wires in MEMS and bio-medical applications. J Magn Magn Mater. 2002; 249:357–367.

    Article  Google Scholar 

  50. Johnsen GK, Lutken CA, Martinsen OG, Grimnes S. Memristive model of electro-osmosis in skin. Phys Rev E. 2011; 83:031916.

    Article  Google Scholar 

  51. Kosta SP, Kosta YP, Bhatele M, Dubey YM, Gaur A, Kosta S, Gupta J, Patel A, Patel B. Human blood liquid memristor. Int J Med Eng Inform. 2011; 3:16–29.

    Article  Google Scholar 

  52. Kosta SP, Kosta YP, Gaur A, Dube YM, Chuadhari JP, Patoliya J, Kosta S, Panchal P, Vaghela P, Patel K, Patel B, Bhatt R, Patel V. New vistas of electronics towards biological (biomass) sensors. Int J Acad Res. 2011; 3:511–526.

    Google Scholar 

  53. Palleau E, Reece S, Desai SC, Smith ME, Dickey MD. Selfhealing stretchable wires for reconfigurable circuit wiring and 3D microfluidics. Adv Mater. 2013; 25:1589–1592.

    Article  Google Scholar 

  54. Shirakawa T, Gunji Y-P, Miyake Y. An associative learning experiment using the plasmodium of Physarum polycephalum. Nano Commun Networks. 2011; 2:99–105.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Adamatzky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adamatzky, A. Physarum wires: Self-growing self-repairing smart wires made from slime mould. Biomed. Eng. Lett. 3, 232–241 (2013). https://doi.org/10.1007/s13534-013-0108-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-013-0108-9

Keywords

Navigation