Skip to main content
Log in

Classification of motor imagery tasks for electrocorticogram based brain-computer interface

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Purpose

In the present study, we propose a novel scheme for motor imagery (MI) classification of multichannel electrocorticogram (ECoG) recordings from patients with medically intractable focal epilepsy.

Methods

This scheme proposes a combination of the two features which includes autoregressive (AR) model coefficients and local binary pattern (LBP) operators. It can provide spatial resolution and angular space information. Then the gradient boosting (GB) in conjunction with ordinary least squares (OLS) algorithm is employed as the classifier to improve the performance of MI classification for ECoG based Brain Computer Interface (BCI) system.

Results

Experimental results on the BCI Competition III data set I indicate that the novel method has excellent performance and yields a cross-validation accuracy of 88.8% and accuracy of 93%, respectively.

Conclusions

From the experimental results and comparative studies, we can infer that the scheme may serve as a good MI classification tool for a better tradeoff between the classification accuracy and computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrerences

  1. Lotte F, Congedo M, Lé cuyer A, Lamarche F, Arnaldi B. A review of classification algorithms for EEG-based braincomputer interfaces. J Neural Eng. 2007; 4:R1–13.

    Article  Google Scholar 

  2. Vallabhaneni A, Wang T, He B. Brain-computer interface. In: He B, editor. Neural Engineering. US: Springer; 2005. pp. 85–121.

    Chapter  Google Scholar 

  3. Nicolas-Alonso LF, Gomez-Gil J. Brain computer interfaces, a review. Sensors. 2012; doi:10.3390/s120101211.

    Google Scholar 

  4. Ince NF, Goksu F, Tewfik AH. ECoG based brain computer Interface with subset selection. Biomed Eng Syst Technol. 2009; 25:357–74.

    Article  Google Scholar 

  5. Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW. A brain-computer interface using electrocorticographic signals in humans. J Neural Eng. 2004; 1:63–71.

    Article  Google Scholar 

  6. Ball T, Kern M, Mutschler I, Aertsen A, Schulze-Bonhage A. Signal quality of simultaneously recorded invasive and noninvasive EEG. Neuroimage. 2009; 46:708–16.

    Article  Google Scholar 

  7. Levine SP, Huggins JE, BeMent SL, Kushwaha RK, Schuh LA, Passaro EA, Rohde MM, Ross DA. Identification of electrocorticogram patterns as the basis for a direct brain interface. J Clin Neurophysiol. 1999; 16:439–47.

    Article  Google Scholar 

  8. Liu C, Gaetz W, Zhu H. The stockwell transform in studying the dynamics of brain functions. Conf Proc Pseudo-Differential Operators: Complex Anal Partial Differential Equations. 2010; 205:277–91.

    MathSciNet  Google Scholar 

  9. D’Croz-Baron D, Ramirez JM, Baker M, Alarcon-Aquino A, Carrera O. A BCI motor imagery experiment based on parametric feature extraction and fisher criterion. Conf Proc Electr Commun Comput. 2012; 257–61.

    Google Scholar 

  10. Zhao H, Liu C, Yu C, Wang H. Channel selection and feature extraction of ECoG-based brain-computer interface using band power. Appl Mech Mater. 2011; doi: 10.4028/www.scientific.net/AMM.44-47.3564.

    Google Scholar 

  11. Li M, Yang J, Hao D, Jia S. ECoG recognition of motor imagery based on SVM Ensemble. Conf Proc IEEE Rob Biomimetics. 2009; 1967–72.

    Google Scholar 

  12. Ojala T, Pietikainen M, Harwood D. A comparative study of texture measures with classification based on feature distributions. Pattern Recognit. 1996; 29:51–9.

    Article  Google Scholar 

  13. Ojala T, Pietikainen M, Mäenpää T. Gray scale and rotation invariant texture classification with local binary patterns. Lect Notes Comput Sc. 2000; 1842:404–20.

    Article  Google Scholar 

  14. Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell. 2002; 24(7):971–87.

    Article  Google Scholar 

  15. Guo ZH, Zhang L, Zhang D. Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognit. 2010; 43:706–19.

    Article  MATH  Google Scholar 

  16. McFarland DJ, Wolpaw JR. Sensorimotor rhythm-based brain-computer interface (BCI): model order selection for autoregressive spectral analysis. J Neural Eng. 2008; 5:155–62.

    Article  Google Scholar 

  17. Paranjape RB, Mahovsky J, Benedicenti L, Koles Z. The electroencephalogram as a biometric. Conf Proc Electr Comput Eng. 2001; 2:1363–6.

    Google Scholar 

  18. Huan NJ, Palaniappan R. Neural network classification of autoregressive features from electroencephalogram signals for brain-computer interface design. J Neural Eng. 2004; 1(3):142–50.

    Article  Google Scholar 

  19. Mirowski P, Madhavan D, LeCun Y, Kuzniecky R. Classification of patterns of EEG synchronization for seizure prediction. Clin Neurophysiol. 2009; 120:1927–40.

    Article  Google Scholar 

  20. Hoffmann U, Garcia G, Vesin JM, Diserens K, Ebrahimi T. A boosting approach to p300 detection with application to braincomputer interfaces. Conf Proc IEEE Neural Eng. 2005; 97–100.

    Google Scholar 

  21. http://www.bbci.de/competition/iii/#data_set_i.

  22. Lai TN, Hinterberger T, Widman G, Schroeder M, Hill J, Rosenstiel M, Elger C, Scholkopf B, Birbaumer N. Methods towards invasive human brain computer interfaces. Conf Proc Adv Neural Inf Process Syst. 2005; 17:737–44.

    Google Scholar 

  23. Hariharan M, Fook CY, Sindhu R, Ilias B, Yaacob S. A comparative study of wavelet families for classification of wrist motions. Comput Electr Eng. 2012; 38:1798–807.

    Article  Google Scholar 

  24. Friedmann JH, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting. Ann Statist. 2000; 28:337–407.

    Article  MathSciNet  Google Scholar 

  25. Friedmann JH. Greedy function approximation: a gradient boosting machine. Ann Statist. 2001; 29(5):1189–232.

    Article  MathSciNet  Google Scholar 

  26. Manyakov NV, Chumerin N, Combaz A, Hulle MMV. Comparison of classification methods for p300 brain-computer interface on disabled subjects. Comput Intell Neurosci. 2011; 1–12.

    Google Scholar 

  27. Huang A, Zhou W. BLDA approach for classifying p300 potential. Conf Proc Med Biol Eng. 2008; 19:341–3.

    Google Scholar 

  28. Hoffmann U, Vesin JM, Ebrahimi T, Diserens K. An efficient p300-based brain-computer interface for disabled subjects. J Neurosci Methods. 2008; 167:115–25.

    Article  Google Scholar 

  29. Wei Q, Tu W. Channel selection by genetic algorithms for classifying single-trial ECoG during motor imagery. Conf Proc IEEE Eng Med Biol Soc. 2008; 624–7.

    Google Scholar 

  30. Zhao H, Yu C, Liu C, Wang H. ECoG-based brain-computer interface using relative wavelet energy and probabilistic neural relative wavelet energy and probabilistic neural. Conf Proc Biomed Eng Inform. 2010; 873–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Zhou, W., Zhen, Y. et al. Classification of motor imagery tasks for electrocorticogram based brain-computer interface. Biomed. Eng. Lett. 4, 149–157 (2014). https://doi.org/10.1007/s13534-014-0128-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-014-0128-0

Keywords

Navigation