Skip to main content
Log in

Ternary Interaction Parameters in Calphad Solution Models

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

For random, diluted, multicomponent solutions, the excess chemical potentials can be expanded in power series of the composition, with coefficients that are pressure- and temperature-dependent. For a binary system, this approach is equivalent to using polynomial truncated expansions, such as the Redlich-Kister series for describing integral thermodynamic quantities. For ternary systems, an equivalent expansion of the excess chemical potentials clearly justifies the inclusion of ternary interaction parameters, which arise naturally in the form of correction terms in higher-order power expansions. To demonstrate this, we carry out truncated polynomial expansions of the excess chemical potential up to the sixth power of the composition variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Wagner, Thermodynamics of alloys (Addison-Wesley, Reading, 1952)

  2. L. S. Darken, Trans. Metall. Soc. AIME. 239, 90 (1967)

    Google Scholar 

  3. A. D. Pelton, C. W. Bale, Met. Trans. A 17, 1211 (1986)

    Article  Google Scholar 

  4. C. W. Bale, A. D. Pelton, Met. Trans. A 1990, 21 (1997)

    Google Scholar 

  5. D. V. Malakhov, Calphad. 41, 16 (2013)

    Article  MathSciNet  Google Scholar 

  6. H. L. Lukas, S. G. Fries, B. Sundman, Computational thermodynamics: the Calphad method (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  7. M. Hillert, Calphad. 4, 1 (1980)

    Article  Google Scholar 

  8. A. D. Pelton, C. W. Bale, Met. Mater. Trans. A 17, 1057 (1986)

    Article  Google Scholar 

  9. A. D. Pelton, Met. Mater. Trans. B 28, 869 (1997)

    Article  Google Scholar 

  10. D. V. Malakhov, Calphad. 35, 142 (2011)

    Article  Google Scholar 

  11. Y. Chang, S. Chen, F. Zhang, X. Yan, F. Xie, R. Schmid-Fetzer, W. Oates, Progr. Mat. Sci. 49, 313 (2004)

    Article  Google Scholar 

  12. O. Redlich, A. T. Kister, Ind. Eng. Chem. 40, 345 (1948)

    Article  Google Scholar 

  13. N. A. Gokcen, J. Phase Equilib. 15, 147 (1994)

    Article  Google Scholar 

  14. M. Margules, Sitzb AkadWissWienMath Naturw Kl II 104, 1243 (1895)

    MATH  Google Scholar 

  15. K. Wohl, T. Am. Inst. Chem. Eng. 42, 215 (1946)

    Google Scholar 

  16. E. A. Guggenheim, T. Faraday Soc. 33, 151 (1937)

    Article  Google Scholar 

  17. W. Cheng, J. Ganguly, Geochim. Cosmochim. Ac. 58, 3763 (1994)

    Article  ADS  Google Scholar 

  18. I. Ansara, Pure Appl. Chem. 70, 449 (1998)

    Article  Google Scholar 

  19. M. Hillert, J. Phase Equilib. 16, 7 (1995)

    Article  Google Scholar 

  20. N. A. Gokcen, J. Phase Equilib. 16, 8 (1995)

    Article  Google Scholar 

  21. L. Eleno, J. Balun, G. Inden, C. G. Schön, Intermetallics 15, 1248 (2007)

    Article  Google Scholar 

  22. W. A. Oates, H. Wenzl, Scripta Mater. 35, 623 (1996)

    Article  Google Scholar 

  23. J. Tomiska, Calphad. 8, 283 (1984)

    Article  Google Scholar 

  24. J. Tomiska, Calphad. 10, 91 (1986)

    Article  Google Scholar 

  25. J. Tomiska, Calphad. 10, 239 (1986)

    Article  Google Scholar 

  26. Y.-M. Muggianu, M. Gambino, J.-P. Bros, J. Chim. Phys. PCB. 72, 83 (1975)

    Google Scholar 

  27. D. N. Saulov, Calphad. 32, 608 (2008)

    Article  Google Scholar 

  28. N. A. Gokcen, M. R. Baren, Met. Trans. A 16, 907 (1985)

    Article  Google Scholar 

  29. N. A. Gokcen, Z. Moser, J. Phase Equilib. 14, 288 (1993)

    Article  Google Scholar 

  30. G. Helffrich, B. Wood, Am. Miner. 74, 1016 (1989)

    Google Scholar 

  31. D. Saulov, Calphad 30, 405 (2006)

    Article  Google Scholar 

  32. A. Janz, R. Schmid-Fetzer, Calphad 29, 37 (2005)

    Article  Google Scholar 

  33. P. Chartrand, A. D. Pelton, J. Phase Equilib. 21, 141 (2000)

    Article  Google Scholar 

  34. L. S. Darken, Trans. Metall. Soc. AIME. 239, 80 (1967)

    Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the São Paulo State Research Funding Agency (FAPESP, São Paulo, SP, Brazil) under Procs. 2009/14532-9 and 2012/04023-2, and by the Brazilian National Research Council (CNPq) under Proc. 304445/2010-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudio G. Schön.

Appendix: Proof of (5)

Appendix: Proof of (5)

Equation 5 is but a generalization of the expansion proposed by [1], who presented only the first few terms. The proof of the general expression, using the Gibbs-Duhem equation, may be of some interest. To that end, we write (3) in the following form

$$ x_{B}\frac{d\mu^{ex}_{B}}{d\, x_{A}}= x_{A}\frac{d\mu^{ex}_{A}}{d\,x_{B}}, $$
(A1)

which is valid for a binary system AB. More compactly, (4) can be rewritten as follows:

$$ \mu^{ex}_{A}=\sum_{\eta=1}^{\eta_{max}} \frac{{{\Omega}}_{A,\eta}}{\eta} {x_{B}}^{\eta},\qquad \mu^{ex}_{B}=\sum_{\eta=1}^{\eta_{max}} \frac{{{\Omega}}_{B,\eta}}{\eta} {x_{A}}^{\eta}. $$
(A2)

Substitution of the right-hand sides in (A2) for the excess chemical potentials in (A1) yields the equality

$$ x_{B} \left({{\Omega}}_{B,1}+ \sum_{\eta=2}^{\eta_{max}} {{\Omega}}_{B,\eta} {x_{A}}^{\eta-1} \right)= x_{A} \left({{\Omega}}_{A,1}+ \sum_{\eta=2}^{\eta_{max}} {{\Omega}}_{A,\eta} {x_{B}}^{\eta-1} \right). $$
(A3)

From (A3), we deduce immediately that Ω A,1= Ω B,1=0, as pointed out by Darken [34]. We also have to equate the sums within the parentheses on both sides of (A3). Division of both sides by the product x A x B then yields the expression

$$ \sum_{\eta=2}^{\eta_{max}} {{\Omega}}_{B,\eta} {x_{A}}^{\eta-2} = \sum_{\eta=2}^{\eta_{max}} {{\Omega}}_{A,\eta} {x_{B}}^{\eta-2} $$
(A4)

We now recall that x B =1−x A and use the binomial theorem to expand the resulting powers of 1−x A , which leads to the equality

$$ \sum_{\eta=2}^{\eta_{max}} {{\Omega}}_{B,\eta} {x_{A}}^{\eta-2} = \sum_{\eta=2}^{\eta_{max}} \sum_{\lambda=0}^{\eta-2} {{\Omega}}_{A,\eta} \binom{\eta-2}{\lambda}(-1)^{\lambda}{{x_{A}}}^{\lambda} $$
(A5)

Since the right-hand side of (A5) is a polynomial in x A , we can easily reverse the order of the double sum, to find that

$$ \sum_{\eta=2}^{\eta_{max}} {{\Omega}}_{B,\eta} {x_{A}}^{\eta-2} = \sum_{\lambda=0}^{\eta_{max}-2} \sum_{\eta=\lambda+2}^{\eta_{max}} {{\Omega}}_{A,\eta} \binom{\eta-2}{\lambda}(-1)^{\lambda}{{x_{A}}}^{\lambda} $$
(A6)

The formal transformations λη−2 and ηλ adjusts the power of x A in the summand on the right-hand side of (A6) to make it identical to the power in the summand on the left-hand side:

$$ \sum_{\eta=2}^{\eta_{max}} {{\Omega}}_{B,\eta}\, {x_{A}}^{\eta-2} = \sum_{\eta=2}^{\eta_{max}} \sum_{\lambda=\eta}^{\eta_{max}} {{\Omega}}_{A,\lambda} \binom{\lambda-2}{\eta-2}(-1)^{\eta}\,{x_{A}}^{\eta-2} $$
(A7)

since (−1)η−2=(−1)η.

Comparison between the coefficients of \(x_{A}^{\eta -2}\) in the summands on both sides of (A7) then yields the final result

$$ {{\Omega}}_{B,\eta} = \sum_{\lambda=\eta}^{\eta_{max}} {{\Omega}}_{A,\lambda} \binom{\lambda-2}{\eta-2}(-1)^{\eta}. $$
(A8)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eleno, L.T.F., Schön, C.G. Ternary Interaction Parameters in Calphad Solution Models. Braz J Phys 44, 208–214 (2014). https://doi.org/10.1007/s13538-014-0183-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-014-0183-0

Keywords

Navigation