Skip to main content
Log in

Modeling of High-Quality Factor XNOR Gate Using Quantum-Dot Semiconductor Optical Amplifiers at 1 Tb/s

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The modeling of all-optical logic XNOR gate is realized by a series combination of XOR and INVERT gates. This Boolean function is simulated by using Mach–Zehnder interferometers (MZIs) utilizing quantum-dots semiconductor optical amplifiers (QDs-SOAs). The study is carried out when the effect of amplified spontaneous emission (ASE) is included. The dependence of the output quality factor (Q-factor) on signals and QDs-SOAs’ parameters is also investigated and discussed. The simulation is conducted under a repetition rate of ∼1 Tb/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.E. Zoiros, G. Papadopoulos, T. Houbavlis, G.T. Kanellos, Opt. Commun. 258, 114 (2006)

    Article  ADS  Google Scholar 

  2. C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, R. Dall’Ara, IEEE Photon. Technol. Lett. 12, 834 (2000)

    Article  ADS  Google Scholar 

  3. T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, M. Renaud, Electron. Lett. 36, 1863 (2000)

    Article  Google Scholar 

  4. H. Chen, G. Zhu, J. Jaques, J. Leuthold, A.B.. Piccirilliand, N.K. Dutta, Electron. Lett. 38, 1271 (2002)

  5. A. Kotb, J. Maeda, Optoelectron. Lett. 8, 437 (2012)

    Article  ADS  Google Scholar 

  6. A. Kotb, S. Ma, Z. Chen, N.K. Dutta, G. Said, Opt. Commun. 284, 5798 (2011)

    Article  ADS  Google Scholar 

  7. A. Kotb, All-optical logic gates using semiconductor optical amplifier, 1st edn. (LAMBERT Academic Publishing, Germany, 2012)

    Google Scholar 

  8. H. Dong, H. Sun, Q. Wang, N.K. Dutta, J. Jaques, Microw. Opt. Technol. Lett. 48, 1672 (2006)

    Article  Google Scholar 

  9. H. Sun, Z. Chen, S. Ma, N.K. Dutta, Proc. SPIE 6775, 67750 (2007)

    ADS  Google Scholar 

  10. Q. Wang, H. Dong, H. Sun, N.K. Dutta, Opt. Commun. 260, 81 (2006)

    Article  ADS  Google Scholar 

  11. M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, H. Ishikawa, Meas. Sci. Technol. 13, 1683 (2002)

    Article  ADS  Google Scholar 

  12. A.V. Uskov, T.W. Berg, J. Mørk, IEEE J. Quant. Electron. 40, 306 (2004)

    Article  ADS  Google Scholar 

  13. Y. Ben-Ezra, M. Haridim, B.I. Lembrikov, IEEE Photon. Technol. Lett. 17, 1803 (2005)

    Article  ADS  Google Scholar 

  14. H. Sun, Q. Wang, H. Dong, N.K. Dutta, Microw. Opt. Technol. Lett. 48, 29 (2006)

    Article  Google Scholar 

  15. S. Ma, Z. Chen, H. Sun, N.K. Dutta, Opt. Express 18, 6417 (2010)

    Article  ADS  Google Scholar 

  16. A. Kotb, Opt. Quant. Electron. 45, 473 (2013)

    Article  Google Scholar 

  17. A. Kotb, Optoelectron. Lett. 9, 89 (2013)

    Article  ADS  Google Scholar 

  18. A. Kotb, K.E. Zoiros, Opt. Quant. Electron. 46, 977 (2014)

    Article  Google Scholar 

  19. E. Dimitriadou, K.E. Zoiros, Prog. Electromagn. Res. B (PIERS) 50, 113 (2013)

    Article  Google Scholar 

  20. Z.V. Rizou, K.E. Zoiros, A. Hatziefremidis, M.J. Connelly, J. Sel. Top. Quant. Electron. 19, 1 (2013)

    Article  Google Scholar 

  21. E. Dimitriadou, K.E. Zoiros, Optics 14, 105401 (2012)

    ADS  Google Scholar 

  22. E. Dimitriadou, K.E. Zoiros, Opt. Laser Technol. 44, 600 (2012)

    Article  ADS  Google Scholar 

  23. E. Dimitriadou, K.E. Zoiros, Opt. Commun. 285, 1710 (2012)

    Article  ADS  Google Scholar 

  24. E. Dimitriadou, K.E. Zoiros, Opt. Laser Technol. 44, 1971 (2012)

    Article  ADS  Google Scholar 

  25. E. Dimitriadou, K.E. Zoiros, Opt. Laser Technol. 45, 79 (2013)

    Article  ADS  Google Scholar 

  26. A. Kotb, K.E. Zoiros, Opt. Quant. Electron. 45, 1213 (2013)

    Article  Google Scholar 

  27. A. Rostami, H. Nejad, R. Qartavol, H. Saghai, IEEE J. Quant. Electron. 46, 354 (2010)

    Article  ADS  Google Scholar 

  28. A. Kotb, Opt. Quant. Electron. 45, 1258 (2013)

    Google Scholar 

  29. A. Kotb, K.E. Zoiros, Comput. Electron. 13, 555 (2014)

    Article  Google Scholar 

  30. N.K. Dutta, Q. Wang, Semiconductor optical amplifiers, 2nd edn. (World Scientific, New York, 2006)

    Book  Google Scholar 

  31. Y. Ben-Ezra, M. Haridim, B.I. Lembrikov, M. Ran, IEEE Photon. Technol. Lett. 20, 484 (2008)

    Article  ADS  Google Scholar 

  32. A. Bogoni, L. Potì, P. Ghelfi, M. Scaffardi, C. Porzi, F. Ponzini, G. Meloni, G. Berrettini, A. Malacarne, G. Prati, Opt. Fiber Technol. 13, 1 (2007)

    Article  ADS  Google Scholar 

  33. Y. Ben-Ezra, B.I. Lembrikov, M. Haridim, IEEE Quant. Electron. 43, 730 (2007)

    Article  ADS  Google Scholar 

  34. G. Toptchiyski, S. Kindt, K. Petermann, E. Hilliger, S. Diez, H.G. Weber, Lightwave Technol. 17, 2577 (1999)

    Article  ADS  Google Scholar 

  35. H.C.H. Mulvad, M. Galili, L.K. Oxenløwe, H. Hu, A.T. Clausen, J.B. Jensen, C. Peucheret, P. Jeppesen, Opt. Express 18, 1438 (2010)

    Article  ADS  Google Scholar 

  36. D.R. Zimmerman, L.H. Spiekman, Lightwave Technol. 22, 63 (2004)

    Article  ADS  Google Scholar 

  37. G.P. Agrawal, Fiber-optic communication systems, 3rd edn. (Wiley, New York, 2002)

    Book  Google Scholar 

  38. S. Bischoff, A. Buxens, S.T. Fischer, M. Dülk, A.T. Clausen, H.N. Poulsen, J. Mørk, Opt. Quant. Electron. 33, 907 (2001)

    Article  Google Scholar 

  39. Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, B. Piccirilli, N.K. Dutta, IEEE J. Quant. Electron. 40, 703 (2004)

    Article  ADS  Google Scholar 

  40. H. Dong, Q. Wang, G. Zhu, J. Jaques, A.B.. Piccirilli, N.K. Dutta, Opt. Commun. 242, 479 (2004)

Download references

Acknowledgments

The authors would like to thank the editors of the journal and anonymous referees for the important comments that helped me to improve the content of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amer Kotb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotb, A. Modeling of High-Quality Factor XNOR Gate Using Quantum-Dot Semiconductor Optical Amplifiers at 1 Tb/s. Braz J Phys 45, 288–295 (2015). https://doi.org/10.1007/s13538-015-0312-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-015-0312-4

Keywords

Navigation