Skip to main content
Log in

Kraus Operators for a Pair of Interacting Qubits: a Case Study

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The Kraus form of the completely positive dynamical maps is appealing from the mathematical and the point of the diverse applications of the open quantum systems theory. Unfortunately, the Kraus operators are poorly known for the two-qubit processes. In this paper, we derive the Kraus operators for a pair of interacting qubits, while the strength of the interaction is arbitrary. One of the qubits is subjected to the x-projection spin measurement. The obtained results are applied to calculate the dynamics of the entanglement in the qubits system. We obtain the loss of the correlations in the finite time interval; the stronger the inter-qubit interaction, the longer lasting entanglement in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. K. Kraus. States, effects and operations, fundamental notions of quantum theory (Springer, Berlin, 1983)

    Book  MATH  Google Scholar 

  2. H.P. Breuer, F. Petruccione. The theory of open quantum systems (Clarendon, Oxford, 2002)

    MATH  Google Scholar 

  3. Á. Rivas, S.F. Huelga. Open quantum systems—an introduction (Springer Briefs in Physics, Berlin, 2012)

    Book  MATH  Google Scholar 

  4. J. Jeknić-Dugić, M. Arsenijević, M. Dugić, Proc. R. Soc. A. 470, 20140283 (2014)

    Article  ADS  Google Scholar 

  5. J. Jeknić-Dugić, M. Arsenijević, M. Dugić, Proc. R. Soc. A. 472, 20160041 (2016)

    Article  ADS  Google Scholar 

  6. L. Ferialdi, Phys. Rev. A. 95, 052109 (2017)

    Article  ADS  Google Scholar 

  7. M.A. Nielsen, I.L. Chuang. Quantum computation and quantum information (Cambridge Univ Press, Cambridge, 2000)

    MATH  Google Scholar 

  8. M. Arsenijević, J. Jeknić-Dugić, M. Dugić, Braz. J. Phys. 47, 339349 (2017)

    Google Scholar 

  9. E. Andersson, J.D. Cresser, M.J.W. Hall, J. Mod. Opt. 54, 1695 (2007)

    Article  ADS  Google Scholar 

  10. L.E. Ballentine, Rev, Phys. A. 43, 9 (1991)

    Article  Google Scholar 

  11. B. Vacchini, Int. J. Theor. Phys. 44, 1011 (2005)

    Article  MathSciNet  Google Scholar 

  12. M.T. Mitchison, M.B. Plenio, New J. of Phys. 20, 033005 (2018)

    Article  ADS  Google Scholar 

  13. P.P. Hofer, et al., New J. of Phys. 19, 123037 (2017)

    Article  ADS  Google Scholar 

  14. J. Onam Gonzalez, et al., Open Sys. Inf. Dyn. 24, 1740010 (2017)

    Article  Google Scholar 

  15. G.L. Deçordi, A. Vidiella-Barranco, Opt. Commun. 387, 366 (2017)

    Article  ADS  Google Scholar 

  16. A.S. Trushechkin, I.V. Volovich, EPL. 113, 30005 (2016)

    Article  Google Scholar 

  17. M. Arsenijević, J. Jeknić-Dugić, D. Todorović, M. Dugić, Vol. 2015. Entanglement relativity in the foundations of the open quantum systems theory, new research on quantum entanglement (Lori Watson, Nova Science Publishers, 2015), pp. 99–116

    Google Scholar 

  18. S.J. Yun, et al., J. Phys. B, At. Mol. Opt. Phys. 48, 075501 (2015)

    Article  ADS  Google Scholar 

  19. B.M. Garraway, P.L. Knight, Phys. Rev. A. 54, 3592 (1996)

    Article  ADS  Google Scholar 

  20. K.L. Viisanen, S.S. Simone Gasparinetti, O. Saira, J. Ankerhold, J.P. Pekola, New J. Phys. 17, 055014 (2015)

    Article  ADS  Google Scholar 

  21. S. Hamedani Raja, M. Borrelli, R. Schmidt, J.P. Pekola, S. Maniscalco, Phys. Rev. A. 97, 032133 (2018). arXiv:1708.04458 [quant-ph]

    Article  ADS  Google Scholar 

  22. Á. Rivas, A. Douglas, K. Plato, S.F. Huelga, M.B Plenio, New J. Phys. 12, 113032 (2010)

    Article  ADS  Google Scholar 

  23. W.H. Louisell. Quantum statistical properties of radiation (Wiley, New York, 1973), p. 182

    Google Scholar 

  24. W.K. Wootters, Rev, Phys. Lett. 80, 2245 (1998)

    Article  Google Scholar 

  25. T. Yu, J.H. Eberly, Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  26. M. Arsenijević, J. Jeknić-Dugić, M. Dugić, Chin. Phys. B. 22, 020302 (2013)

    Article  ADS  Google Scholar 

  27. R.E. Kastner, J. Jeknić-Dugić, G. Jaroszkiewicz (eds.), Quantum Structures. Classical Emergence from the Quantum Level (World Scientific, Singapore, 2017)

    MATH  Google Scholar 

  28. A. Brodutch, A. Datta, K. Modi, Á. Rivas, C.A. Rodríguez-Rosario, Phys. Rev. A. 87, 042301 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Arsenijević.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arsenijević, M., Jeknić-Dugić, J. & Dugić, M. Kraus Operators for a Pair of Interacting Qubits: a Case Study. Braz J Phys 48, 242–248 (2018). https://doi.org/10.1007/s13538-018-0570-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-018-0570-z

Keywords

Navigation