Skip to main content

Advertisement

Log in

Environmental impact of greenhouse tomato production in France

  • Research Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

The environmental impact of greenhouse production in France is poorly documented. Environmental benefits versus drawbacks of greenhouse production are not well known. Assessments that intregrate pesticide toxicology and transfer of mass and energy are scarce. Here, we compared the main types of tomato production, heated, year-round production in plastic houses or glasshouses, and seasonal production under polytunnel. Environmental impacts where assessed by life cycle analysis. Analyses were performed after the construction of a database relating the integrality of matter and energy fluxes, regarding the structure of the system, the inputs for production, and the waste products. Results show that greenhouse heating had the highest environmental impacts, including toxicological impact. For instance, the mean environmental impact of heated crops under plastic or in glasshouses was 4.5 times higher than in tunnels. Furthermore, pesticides in tunnels had a 3- to 6-fold higher impact in terms of terrestrial or aquatic ecotoxicology or human toxicology. Our results were compared with data from other temperate production regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • ADEME/FNCUMA. (2004) Gestion des films plastiques agricoles usagés: analyse des expériences existantes et des problèmes soulevés. ADEME-FNCUMA report, 116 pp.

  • Agreste (2008a) La tomate en 2007: bilan de campagne. Service des nouvelles des marchés, Minist. agriculture and fisheries. Available at: http://www.snm.agriculture.gouv.fr/bilan/tomate07.pdf

  • Agreste (2008b) Infos rapides—Légumes–Tomate—Septembre no 5/6. Available at: http://www.agreste.agriculture.gouv.fr

  • Agreste (2009) La tomate en 2008 : bilan de campagne. Service des nouvelles des marchés, Minist. agriculture and fisheries. Available at: http://www.snm.agriculture.gouv.fr/bilan/tomate08.pdf

  • Antón A, Castells F, Montero JI, Huijbregts M (2004) Comparison of toxicological impacts of integrated and chemical pest management in Mediterranean greenhouses. Chemosphere 54(8):1225–1235

    Article  PubMed  Google Scholar 

  • Antón A, Montero JI, Munoz P (2005) LCA and tomato production in Mediterranean greenhouses. Int J Agr Resour Govern Ecol 4(2):102–112

    Google Scholar 

  • Audsley E (1997) Harmonisation of environmental life cycle assessment for agriculture. Final report, concerted action AIR3-CT94-2028. European Commission, DG VI Agriculture, 139 pp.

  • Canakci M, Akinci I (2006) Energy use pattern analyses of greenhouse vegetable production. Energy 31:1243–1256

    Article  Google Scholar 

  • Challa H, Bakker J (1998) Potential production within the greenhouse environment. In: Enoch Z, Stanhill G (eds) Ecosystems of the world. The greenhouse ecosystem. Elsevier, Amsterdam

    Google Scholar 

  • Colino J, Martínez JM (2002) El agua en la agricultura del Sureste español. In: “La agricultura Mediterránea del siglo XXI”.

  • de Villiers DS, Wien HC, Reid JE, Albright LD (2009) Energy use in tomato production: field, high tunnel and greenhouse compared for the northern tier of the USA. ISHS Greensys congress, Hotel Loews, Québec, Canada, June 14–19

  • Footprint PPDB (2007) The FOOTPRINT Pesticide Properties Database. Collated by the University of Hertfordshire as part of the EU-Funded FOOTPRINT project (FP6-SSP-022704). Available at: http://www.eu-footprint.org/ppdb.html. See also http://sitem.herts.ac.uk/aeru/footprint. University of Hertfordshire, Hertfordshire

  • Frischknecht R, Jungbluth N, Althaus H-J, Doka G, Dones G, Hischier R, Hellweg S, Humbert S, Margni M, Nemecek T, Spielmann M (2003) Implementation of Life Cycle Impact Assessment Methods. Ecoinvent report. Swiss Centre for Life Cycle Inventories, Dübendorf

  • Garreyn F, Vagenende B, Steurbaut W (2003) Harmonized environmental indicators for pesticides risk occupational indicators: operator, workers and bystander. Report financed by the EU sixth Framework Programme, contact number SSPEC-CT-2003-501977

  • Grasselly D, Hamm F, Quaranta G, Vitrou J (2009) Carbon footprint of coconut fibre (coir) substrates. Infos-CTIFL 249:55–59

    Google Scholar 

  • Guinée J. (ed) (2001) Life cycle assessment: An operational guide to the ISO Standards, Final Report. Ministry of Housing, Spatial Planning and the Environment (VROM) and Centre of Environmental Science – Leiden University (CML)

  • Gutsche V, Strassemeyer J (2007) SYNOPS: ein Modell zur Bewertung des Umwelt-Risikopotentials von chemischen Pflanzenschutzmitteln. Nachrichtenbl. Deut. Pflanzenschutzdienst 59(9):197–210

  • Hauschild MZ (2000) Estimating pesticide emission for LCA of agricultural products. In: Weidema B, Moeusen M (eds), Agricultural Data for LCA, vol. 2. Agricultural Economic Research Institute, The Hague, pp 64–79

  • Hauschild MZ, Wenzel H (1998) Environmental assessment of products. 2: scientific background. 2. Chapman & Hall, London

    Google Scholar 

  • Hayer F, Gaillard G (2010) Aquatic and terrestrial ecotoxicity as well as human toxicity characterisation factors for pesticide emissions to soil according to the methods USES-LCA and EDIP. Available at: http://www.agroscope.admin.ch/oekobilanzen/01197/index.html?lang=de

  • Heijungs H, Guinée JB, Huppes G, Lankreijer RM, Udo de Haes HA, Wegener Sleeswijk A, Ansems AMM, Eggels PG, van Duin R, de Goede HP (1992) Environmental life cycle assessment of products: guide and backgrounds (Part 1). Centre of Environmental Sciences, Leiden

    Google Scholar 

  • Hong SW, Lee IB, Hwang HS, Seo IH, Bitog JP, Yoo JI, Kim KS, Lee SH, Kim KW, Yoon NK (2008) Numerical simulation of ventilation efficiencies of naturally ventilated multi-span greenhouses in Korea. Trans ASABE 51(4):1417–1432

    Google Scholar 

  • Huijbregts MAJ, Thissen U, Guinée JB, Jager T, Kalf D, van de Meent D, Ragas AMJ, Wegener Sleeswijk A, Reijnders L (2000) Priority assessment of toxic substances in life cycle assessment. Part I: calculation of toxicity potentials for 181 substances with the nested multi-media fate, exposure and effects model USES-LCA. Chemosphere 41(4):541–573

    Article  PubMed  CAS  Google Scholar 

  • IPCC (1997) IPCC (Revised 1996) Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change, Paris

    Google Scholar 

  • IPCC (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, 882 pp

  • ISO IOFS (2006) ISO 14040—Environmental management—life cycle assessment—principles and framework, Geneva.

  • Jeannequin B, Dosba F, Amiot-Carlin MJ (2005) Un point sur la filière fruits et légumes—caractéristiques et principaux enjeux. INRA éditions, Paris

    Google Scholar 

  • Jolliet O (1993) Bilan écologique de la production de tomates en serre. Revue suisse Vitic. Arboric Hortic 25(4):261–267

    Google Scholar 

  • Jolliet O., Saadé M., Crettaz P. (2005) Analyse du cycle de vie: comprendre et réaliser un écobilan. Presses Polytechniques et Universitaires Romandes, Collection gérer l’environnement

  • Lecompte F, Bressoud F, Parès L, De Bruyne F (2008) Root and nitrate distribution as related to the critical plant-N status of a fertigated tomato crop. Journal of Horticultural Science and Biotechnology 83:223–231

    CAS  Google Scholar 

  • Nicot P, Baille A (1996) Integrated control of Botrytis cinerea on greenhouse tomatoes. In: Morris C (ed) Aerial plant surface microbiology. Plenum Press, New York, pp 169–189

    Chapter  Google Scholar 

  • Nienhuis JK (1996) Utility of the environmental life cycle assessment method in horticulture. Acta Hort (ISHS) 429:531–538

    Google Scholar 

  • NYSERDA (New York State Energy Research and Development Authority) (2009) Energy investments and CO2 emissions for fresh produce imported into New York State compare to the same crops grown locally. State of New York, Albany, NY. http://www.nyserda.org/publications/locally%20grown%20imported%20produce.pdf. Accessed July 2009

  • Pluimers JC, Kroeze C, Bakker EJ, Challa AH, Nordijk L (2000) Quantifying the environmental impact of production in agriculture and horticulture in The Netherlands: which emissions do we need to consider? Agric Syst 66:167–189

    Article  Google Scholar 

  • Reinhardt W., Albright L. and de Villiers D.S. (2008) Energy investments and CO2 emissions for fresh produce imported into New York State compared to the same crops grown locally. New York State Energy Research and Development Authority. Report 08–10, USA

  • Sedilot C, Degas L, le Quillec S, Brajeul E, Grasselly D (2002) Management of greenhouse effluents: a status report for France. (La gestion des effluents des serres: l'etat des lieux en France.). Infos-Ctifl 181:50–52

    Google Scholar 

  • SIMAPRO. (2007) Ecoinvent life Cycle Inventory Database, Printerweg 18—3821 ad Amersfoort, the Netherlands

  • Stanhill G (1980) The energy cost of protected cropping: a comparison of six systems of tomato production. J Agric Eng Res 25:145–154

    Article  Google Scholar 

  • Tong G, Christopher DM, Li B (2009) Numerical modelling of temperature variations in a Chinese solar greenhouse. Comput electron agric 68(1):129–139

    Article  Google Scholar 

  • van Woerden (2001) The application of Life Cycle Analysis in glasshouse horticulture. International Conference LCA in Foods. Gothenburg, no 143, pp 136–140

  • Vésine E, Grisey A, Pommier F, Chantry A, Plasentin J, Chassériaux G, 2007. Utilisation rationnelle d’énergie dans les serres: situation technico-économique en 2005 et leviers d’action actuels et futurs. Etude réalisée pour le compte de l’ADEME. Available at: http://www2.ademe.fr/servlet/getDoc?cid=96&m=3&id=44445&p1=02&p2=07&ref=17597

  • Williams AG, Audsley E, Sandars DL (2006) Determining the environmental costs and resources use in the production of agricultural and horticultural commodities. Main Report. Defra Research Project ISO205. Cranfield University and Defra, Bedford. Available at: http://www.defra.gov.uk

Download references

Acknowledgements

This work was carried out with the financial support of the French ANR-05-PADD-09, EcoSerre project for the years 2006–2008 and the European Network for durable exploitation of crop protection strategies (ENDURE) FP6-2005-FOOD-4-A project no. 031499.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Boulard.

About this article

Cite this article

Boulard, T., Raeppel, C., Brun, R. et al. Environmental impact of greenhouse tomato production in France. Agron. Sustain. Dev. 31, 757–777 (2011). https://doi.org/10.1007/s13593-011-0031-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-011-0031-3

Keywords

Navigation