Skip to main content

Advertisement

Log in

Nitrogen fertilization impacts biocontrol of tomato gray mold

  • Research Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Gray mold, caused by Botrytis cinerea, is a common threat for greenhouse production of tomatoes. Control of this disease can be difficult even with chemical treatments, and alternative methods are needed. Nitrogen (N) fertilization is known to modify the impact of pathogens on plants. However, there is scarce knowledge about the effect of fertilization on the efficacy of biocontrol. Here, we studied the effect of N fertilization on biocontrol agents Trichoderma atroviride and Microdochium dimerum that protect tomato against B. cinerea. Plants were grown for 2 months in a greenhouse with a soil-less drip irrigation system. Differential N fertilization (five concentrations of nitrate) was applied for the last 4 weeks prior to leaf pruning, biocontrol agent application, and B. cinerea inoculation. Results show that increasing N fertilization up to 10 mmol/L reduced disease by half for controls. High N fertilization also increased biocontrol, with a protection index rising from nearly 0 to up to 100 % depending on the biocontrol agent and the pressure of the pathogen. Indeed, high N fertilization delayed stem symptoms and slowed lesion expansion. To our knowledge, this is the first report of an effect of N fertilization on the efficacy of biocontrol against an airborne disease. Therefore, adapting N fertilization is a promising technique to protect greenhouse tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abro MA, Lecompte F, Bryone F, Nicot PC (2013) Nitrogen fertilization of the host plant influences production and pathogenicity of Botrytis cinerea secondary inoculum. Phytopathology 103:261–267. doi:10.1094/phyto-08-12-0189-r

    Article  PubMed  Google Scholar 

  • Bolton MD (2009) Primary metabolism and plant defense—fuel for the fire. Mol Plant Microbe Interact 22:487–497. doi:10.1094/MPMI-22-5-0487

    Article  CAS  PubMed  Google Scholar 

  • Aguayo C, Riquelme J, Valenzuela PDT, Hahn M, Moreno ES (2011) Bchex virulence gene of Botrytis cinerea: characterization and functional analysis. J Gen Plant Pathol 77:230–238. doi:10.1007/s10327-011-0311-4

    Article  Google Scholar 

  • Barakat RM (2008) The effect of Trichoderma harzianum in combination with organic amendment on soil suppressiveness to Rhizoctonia solani. Phytopathol Mediterr 47:11–19

    Google Scholar 

  • Bardin M, Fargues J, Nicot PC (2008) Compatibility between biopesticides used to control grey mould, powdery mildew and whitefly on tomato. Biol Control 46:476–483. doi:10.1016/j.biocontrol.2008.05.012

    Article  Google Scholar 

  • Clermont N, Lerat S, Beaulieu C (2011) Genome shuffling enhances biocontrol abilities of Streptomyces strains against two potato pathogens. J Appl Microbiol 111:671–682. doi:10.1111/j.1365-2672.2011.05078.x

    Article  CAS  PubMed  Google Scholar 

  • Datnoff LE, Elmer WH, Huber DM (2007) Mineral nutrition and plant disease. APS, St. Paul, MN

    Google Scholar 

  • El-Ghaouth A, Wilson CL, Wisniewski M, Droby S, Smilanick JL, Korsten L (2002) Biological control of postharvest diseases of citrus fruits. In: Gnanamanickam SS (ed) Biological control of crop diseases. Marcel Dekker, New York, pp 289–312

    Google Scholar 

  • Gomez L, Bancel D, Rubio E, Vercambre G (2007) The microplate reader: an efficient tool for the separate enzymatic analysis of sugars in plant tissues—validation of a micro-method. J Sci Food Agric 87:1893–1905. doi:10.1002/jsfa.2924

    Article  CAS  Google Scholar 

  • Guetsky R, Elad Y, Shtienberg D, Dinoor A (2002) Improved biocontrol of Botrytis cinerea on detached strawberry leaves by adding nutritional supplements to a mixture of Pichia guilliermondii and Bacillus mycoides. Biocontrol Sci Tech 12:625–630. doi:10.1080/0958315021000016289

    Article  Google Scholar 

  • Hoffland E, Van Beusichem ML, Jeger MJ (1999) Nitrogen availability and susceptibility of tomato leaves to Botrytis cinerea. Plant Soil 210:263–272. doi:10.1023/A:1004661913224

    Article  CAS  Google Scholar 

  • Huber DM, Thompson IA (2007) Nitrogen and plant disease. In: Datnoff LE et al (eds) Mineral nutrition and plant disease. APS, Saint Paul, MN, pp 31–44

    Google Scholar 

  • Jackson AM, Whipps JM, Lynch JM, Bazin MJ (1991) Effects of some carbon and nitrogen sources on spore germination, production of biomass and antifungal metabolites by species of Trichoderma and Gliocladium virens antagonistic to Sclerotium cepivorum. Biocontrol Sci Tech 1:43–51. doi:10.1080/09583159109355184

    Article  Google Scholar 

  • Jacobsen BJ (2006) Biological control of plant diseases by phyllosphere applied biological control agents. In: Bailey MJ (ed) Microbial ecology of aerial plant surfaces. CABI, Wallingford, pp 133–147. doi:10.1079/9781845930615.0133

    Chapter  Google Scholar 

  • Janisiewicz WJ, Usall J, Bors B (1992) Nutritional enhancement of biocontrol of blue mold on apples. Phytopathology 82:1364–1370. doi:10.1094/Phyto-82-1364

    Article  CAS  Google Scholar 

  • Khattabi N, Ezzahiri B, Louali L, Oihabi A (2004) Effect of nitrogen fertilizers and Trichoderma harzianum on Sclerotium rolfsii. Agronomie 24:281–288. doi:10.1051/agro:2004026

    Article  Google Scholar 

  • Lecompte F, Abro MA, Nicot PC (2010) Contrasted responses of Botrytis cinerea isolates developing on tomato plants grown under different nitrogen nutrition regimes. Plant Pathol 59:891–899. doi:10.1111/j.1365-3059.2010.02320.x

    Article  CAS  Google Scholar 

  • Lopez-Mondejar R, Blaya J, Obiol M, Ros M, Pascual JA (2012) Evaluation of the effect of chitin-rich residues on the chitinolytic activity of Trichoderma harzianum: in vitro and greenhouse nursery experiments. Pestic Biochem Physiol 103:1–8. doi:10.1016/j.pestbp.2012.02.001

    Article  CAS  Google Scholar 

  • Nicot PC, Decognet V, Bardin M, Romiti C, Trottin Y, Fournier C, Leyre JM (2003) Potential for including Microdochium dimerum, a biocontrol agent against Botrytis cinerea, into an integrated protection scheme of greenhouse tomatoes. In: Roche L, Edin M, Mathieu V, Laurens F (eds) Colloque international tomate sous abri, protection intégrée—agriculture biologique, Avignon, France, 17–18 et 19 Septembre 2003. Centre Technique Interprofessionnel des Fruits et Légumes, Paris, pp 19–23

    Google Scholar 

  • Nicot PC, Decognet V, Fruit L, Bardin M, Trottin Y (2002) Combined effect of microclimate and dose of application on the efficacy of biocontrol agents for the protection of pruning wounds on tomatoes against Botrytis cinerea. IOBC/WPRS Bulletin 25(10):73–76

    Google Scholar 

  • Nicot PC (ed.) (2011) Classical and augmentative biological control against diseases and pests: critical status analysis and review of factors influencing their success. IOBC-WPRS. 183 pp. Freely available online through www.iobc-wprs.org

  • O'Neill TM, Shtienberg D, Elad Y (1997) Effect of some host and microclimate factors on infection of tomato stems by Botrytis cinerea. Plant Dis 81:36–40. doi:10.1094/pdis.1997.81.1.36

    Article  Google Scholar 

  • Van Lenteren, JC (ed.) (2012) IOBC Internet book of biological control. Version 6. IOBC-Global, pp 182. Freely available online through www.iobc-global.org

Download references

Acknowledgments

The authors thank Joel Béraud, François De Bruyne, Magali Duffaud, Michel Pascal, Michèle Leplat, and Nathalie Truglio for their technical participation in the experiments and Doriane Bancel, Emilie Rubio, and Sylvie Serino for the biochemical analyses. This work is part of the French “Programme National de Recherche PICLèg” and the SYSBIOTEL project. It received financial support from INRA and the French “Agence Nationale de la Recherche.” A grant for this study was also provided by the Higher Education Commission of Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe C. Nicot.

About this article

Cite this article

Abro, M.A., Lecompte, F., Bardin, M. et al. Nitrogen fertilization impacts biocontrol of tomato gray mold. Agron. Sustain. Dev. 34, 641–648 (2014). https://doi.org/10.1007/s13593-013-0168-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-013-0168-3

Keywords

Navigation