Skip to main content

Advertisement

Log in

Bioenergy farming using woody crops. A review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

The global energy consumption was 540 EJ in 2010, representing an increase of about 80 % from 1980. Energy demand is predicted to grow more than 50 % by 2025. Fossil fuels will supply about 75 % of the future energy demand in 2030–2050 if there are no significant technological innovations or carbon emission constraints. This will induce in a substantial increase of CO2 atmospheric concentration and, in turn, adverse climatic impacts. A solution to this issue is to replace fossil fuels by renewable fuels such as biomass. For instance cultivated woody biomass shows many advantages such as allowing multiple harvests without having to re-plant. Poplar, eucalyptus, salix, paulownia and black locust are common examples of woody biomass. Here we review the current situation and future tendency of renewable energy focusing on solid biomass in Europe and Spain. We also discuss the potential production for short-rotation plantations in the bioenergy sector and existing constraints for the implantation in Spain in a sustainable context. Countries with low biomass resources and high targets for renewable electricity may have to depend on imported solid biomass, whereas countries with wide solid biomass resources benefit from international markets. The expansion of short-rotation plantations is much lower than expected in some countries such as Spain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

Mtep:

Million-ton equivalent of petroleum

EJ yr−1 :

ExaJoules per year (prefix exa = ×1018)

Mtoe:

Megatonnes of oil equivalent

Mt:

Megatonnes

MW:

MegaWatt

MWh:

MegaWatt hour

PJ:

PetaJoules (prefix peta = ×1015)

TWh:

TeraWatt hour (prefix tera = ×1012)

Tg:

Teragrammes

GJ ha−1 :

GigaJoules per hectare (prefix giga = ×10)

twb h−1 :

Tonnes wet basis per hour

tDM :

Tonnes of dry matter

gt ha−1 :

Green tonnes per hectare

gt SMH−1 :

Green tonnes per schedules machine hour

References

  • AAE (2011) La biomasa en Andalucía. Agencia Andaluza de la Energía, Consejería de Economía, Innovación y Ciencia, Junta de Andalucía. Sevilla, Spain

  • Abrahamson LP, Volk TA, Kopp RF, White EH, Ballard JL (2002) Willow biomass producer’s handbook. Syracuse, NY. http://www.esf.edu/willow/documents/ProducersHandbook.pdf. Accessed 24 April 2013

  • Amichev BY, Kurz WA, Smyth C, van Reels KCJ (2012) The carbon implications of a large-scale afforestation of agriculturally marginal land with short-rotation willow in Saskatchewan. GCB Bioenergy 4:70–87. doi:10.1111/j.1757-1707.2011.01110.x

    Google Scholar 

  • Banse M, van Meijl H, Tabeau A, Woltjer G, Hellmann F, Verburg PH (2011) Impact of EU biofuel policies on world agricultural production and land use. Biomass Bioenergy 35:2385–2390. doi:10.1016/j.biombioe.2010.09.001

    Google Scholar 

  • Berndes G, Hoogwijk M, van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy 25:1–28. doi:10.1016/S0961-9534(02)00185-X

    Google Scholar 

  • Böhm C, Quinkenstein A, Freese D (2011) Yield prediction of young black locust (Robinia pseudoacacia L.) plantations for woody biomass production using allometric relations. Ann Forest Res 54:215–227

    Google Scholar 

  • Börjesson P, Berndes G (2006) The prospects for willow plantations for wastewater treatment in Sweden. Biomass Bioenergy 30:428–438. doi:10.1016/j.biombioe.2005.11.018

    Google Scholar 

  • Broeckx LS, Verlinden MS, Ceulemans R (2012) Establishment and two-year growth of a bio-energy plantation with fast-growing Populus tress in Flanders (Belgium): effects of genotype and former land use. Biomass Bioenerg 42:151–163. doi:10.1016/j.biombioe.2012.03.005

    Google Scholar 

  • Busch G (2012) GIS-based tools for regional assessments and planning processes regarding potential environmental effects of poplar SRC. Bioenergy Res 5:584–605. doi:10.1007/s12155-012-9224-0

    Google Scholar 

  • Butnar I, Rodrigo J, Gasol CM, Castells F (2010) Life-cycle assessment of electricity from biomass: case studies of two biocrops in Spain. Biomass Bioenergy 34:1780–1788. doi:10.1016/j.biombioe.2010.07.013

    CAS  Google Scholar 

  • Cao Y, Lehto T, Piirainen S, Kukkonen JVK, Pelkonen P (2012) Effects of planting orientation and density on the soil solution chemistry and growth of willow cuttings. Biomass Bioenergy 46:165–173. doi:10.1016/j.biombioe.2012.09.006

    CAS  Google Scholar 

  • Cerdá TE (2012) La biomasa en España: una fuente de energía renovable con gran futuro. Fundación Ideas. http://parlamentocientificodejovenes.files.wordpress.com/2013/10/dt-la_biomasa_en_espana-una_fuente_de_energia_renovable_de_gran_futuro.pdf. Accessed 15 August 2014

  • Cerdá E, Caparrós A, Ovando P (2008) Bioenergía en la Unión Europea. Ekonomiaz 67:156–181

    Google Scholar 

  • Ciria CMP (2011) Desarrollo de los cultivos energéticos leñosos en España. Vida Rural 329

  • de Andalucía J (2012) Ensayos con cultivos energéticos. Periodo, 2005–2010. Síntesis de resultados y principales conclusiones. Agencia de Gestión Agraria y Pesquera de Andalucía. CAPMA, Sevilla, Spain

    Google Scholar 

  • de Vries BJ, van Vuuren DP, Hoogwijk MM (2007) Renewable energy sources: their global potential for the first-half of the 21st century at a global level: an integrated approach. Energ Policy 35:2590–2610. doi:10.1016/j.enpol.2006.09.002

    Google Scholar 

  • Deckmyn G, Muys B, García QJ, Ceulemans R (2004) Carbon sequestration following afforestation of agricultural soils: comparing oak/beech forest to short-rotation poplar coppice combining a process and carbon accounting model. Glob Chang Biol 10:1482–1491. doi:10.1111/j.1365-2486.2004.00832.x

    Google Scholar 

  • Di Matteo G, Sperandio G, Verani S (2012) Field performance of poplar for bioenergy in Southern Europe after two coppicing rotations: effects of clone and planting density. iForest-Biogeosciences Forestry 5:224–229. doi:10.3832/ifor0628-005

    Google Scholar 

  • Dimitriou I, Rosenqvist H (2011) Sewage sludge and wastewater fertilization of short rotation coppice (SRC) for increased bioenergy production—biological and economic potential. Biomass Bioenergy 35:835–842. doi:10.1016/j.biombioe.2010.11.010

    Google Scholar 

  • Dimitriou I, Rosenqvist H, Berndes G (2011) Slow expansion and low yields of willow short rotation coppice in Sweden; implications for future strategies. Biomass Bioenergy 35:4613–4618. doi:10.1016/j.biombioe.2011.09.006

    Google Scholar 

  • Dimitriou I, Mola YB, Aronsson P, Eriksson J (2012) Changes in organic carbon and trace elements in the soil of willow short rotation coppice plantations. Bioenergy Res 5:563–572. doi:10.1007/s12155-012-9215-1

    CAS  Google Scholar 

  • Dinica V (2009) Biomass power: exploring the diffusion challenges in Spain. Renew Sust Energy Rev 13:1551–1559. doi:10.1016/j.rser.2008.10.002

    Google Scholar 

  • Djomo SN, Kasmioui OE, Ceulemans R (2011) Energy and greenhouse gas balance of bioenergy production from poplar and willow: a review. Glob Chang Biol Bioenerg 3:181–197. doi:10.1111/j.1757-1707.2010.01073.x

    CAS  Google Scholar 

  • Dornburg V, Faaij A, Verweij P, Langeveld H, van de Ven G (2008) Biomass assessment: global biomass potentials and their links to food, water, biodiversity, energy demand and economy. Climate change scientific assessment and policy analysis (WAB) programme

  • Durán ZVH, Rodríguez PCR, Francia MJR, Martínez RA, Arroyo PL, Cárceles RB, Navarro MMC (2008) Benefits of plant strips for sustainable mountain agriculture. Agron Sustain Develop 4:497–505. doi:10.1051/agro:2008020

    Google Scholar 

  • Durán ZVH, Jiménez BJA, Perea TF, Rodríguez PCR, Francia MJR (2014) Biomass yield potential of paulownia trees in a semi-arid Mediterranean environment (S Spain). Int J Renew Energy Res 4:789–793

    Google Scholar 

  • Ericsson T (1994) Nutrient dynamics and requirements of forest crops. N Z J For Sci 24:133–68

    Google Scholar 

  • Ericsson K, Rosenqvist H, Ganko E, Pisarek M, Nilsson L (2006) An agro-economic analysis of willow cultivation in Poland. Biomass Bioenergy 30:16–27

    Google Scholar 

  • Esteban LS, Carrasco JE (2011) Biomass resources and costs: assessment in different EU countries. Biomass Bioenergy 35:S21–S30. doi:10.1016/j.biombioe.2011.03.045

    Google Scholar 

  • Fernández J, Sánchez J, Esteban B (2009) Potential lignocellulosic biomass production from dedicated energy crops in marginalized agricultural lands of Spain. 17th European Biomass conference, Hamburg, Germany, pp 131–137

  • Fiala M, Bacenetti J (2012) Economic, energetic and environmental impact of short rotation coppice harvesting operations. Biomass Bioenergy 42:107–113. doi:10.1016/j.biombioe.2011.07.004

    CAS  Google Scholar 

  • Fischer G, Prieler S, van Velthuizen H, Berndes G, Faaij A, Londo M, de Wit M (2010) Biofuel production potentials in Europe: sustainable use of cultivated land and pastures, part II: land use scenarios. Biomass Bioenergy 34:173–187. doi:10.1016/j.biombioe.2009.07.008

    Google Scholar 

  • Gabriele B, Nguyen TN, Paupu P, Vial E (2013) Life cycle assessment of eucalyptus short rotation coppices for bioenergy production in southern France. GCB Bioenergy 6:30–42. doi:10.1111/gcbb.12008

    Google Scholar 

  • García R, Pizarro C, Lavín AG, Bueno JL (2012) Characterization of Spanish biomass wastes for energy use. Bioresour Technol 103:249–258. doi:10.1111/gcbb.12008

    PubMed  Google Scholar 

  • García MI, Muñoz LF, Rey PJM (2014) Qualitative insights into the commercialization of wood pellets: the case of Andalusia, Spain. Biomass Bioenergy 64:245–255. doi:10.1016/j.biombioe.2014.02.013

    Google Scholar 

  • Gasol CM, Martínez S, Rigola M, Rieradevall J, Anton A, Carrasco J (2009) Feasibility assessment of poplar bioenergy systems in the Southern Europe. Renew Sust Energy Rev 13:801–812. doi:10.1016/j.rser.2008.01.010

    CAS  Google Scholar 

  • Gasol CM, Brun F, Mosso A, Rieradevall J, Gabarell X (2010) Economic assessment and comparison of acacia energy crop with annual traditional crops in Southern Europe. Energy Policy 38:592–597. doi:10.1016/j.enpol.2009.10.011

    Google Scholar 

  • Gerbens LW, Hoekstra AY, Van Der Meer TH (2009) The water footprint of bioenergy. Proc Natl Acad Sci U S A 106:10219–10223. doi:10.1073/pnas.0812619106

    Google Scholar 

  • Gexbioma (2013) General de Explotaciones para biomasa. Paulownia, la mejor alternativa para el futuro. http://www.gexbioma.com/paulownia.php. Accessed 28 August 2013

  • Goldemberg J (2002) Brazilian energy initiative, world summit on sustainable development; Setembro. Joanesburgo, South Africa

    Google Scholar 

  • Gómez A, Zubizarreta J, Dopazo C, Fueyo N (2011) Spanish energy roadmap to 2020. Socioeconomic implications of renewable targets. Energy 36:1973–1985. doi:10.1016/j.energy.2010.02.046

    Google Scholar 

  • González GS, Martínez GC, Moreira MT, Gabarrell X, Rieradeevall PJ, Feijoo G (2011) Environmental assessment of black locust (Robinia pseudoacacia L.)-based ethanol as potential transport fuel. Int J Lyfe Cycl Assess 16:465–477. doi:10.1007/s11367-011-0272-z

    Google Scholar 

  • González GS, Moreira MT, Jeijoo G (2012a) Environmental aspects of eucalyptus based ethanol production and use. Sci Total Environ 438:1–8. doi:10.1016/j.scitotenv.2012.07.044

    Google Scholar 

  • González GS, Moreira MT, Feijoo G, Murphy RJ (2012b) Comparative life cycle assessment of ethanol production from fast-growing wood crops (black locust, eucalyptus and poplar). Biomass Bioenergy 39:378–388. doi:10.1016/j.biombioe.2012.01.028

    Google Scholar 

  • Grüenewald H, Brandt BKV, Uwe SB, Bens O, Kendzia G, Hüttl FR (2007) Agroforestry systems for the production of woody biomass for energy transformation purposes. Ecol Eng 29:319–328. doi:10.1016/j.ecoleng.2006.09.012

    Google Scholar 

  • Grünewald H, Böhm C, Quinkenstein A, Grundmann P, Eberts J, Wühlisch G (2009) Robinia pseudoacacia L.: a lesser known tree species for biomass production. Bioenergy Res 2:123–133. doi:10.1007/s12155-009-9038-x

    Google Scholar 

  • Guo LB, Sims REH, Horne DJ (2006) Biomass production and nutrient cycling in Eucalyptus short rotation energy forests in New Zealand: II. Litter fall and nutrient return. Biomas Bioenergy 30:393–404. doi:10.1016/j.ecoleng.2006.09.012

    CAS  Google Scholar 

  • Hämäläinen S, Näyhä A, Pesonen HL (2011) Forest biorefineries. A business opportunity for the Finnish forest cluster. J Clean Prod 19:1884–1891. doi:10.1016/j.jclepro.2011.01.011

    Google Scholar 

  • Havlicková K, Weger J (2009) Short rotation coppice for energy purposes—economy conditions and landscape functions in the Czech Republic. Proceedings of ISES World Congress 2007 (Vol. 1–5). Beijing, China, pp 2482–2487

  • Heinimö J, Junginger M (2009) Production and trading of biomass for energy—an overview of the global status. Biomass Bioenergy 33:1310–1320. doi:10.1016/j.biombioe.2009.05.017

    Google Scholar 

  • Herranz JL (2008) Estrategia para el uso energético de la biomasa forestal residual. Congreso Nacional de Medio Ambiente, CONAMA9

  • Hoefnagels R, Resch G, Junginger M, Faaij A (2014) International and domestic uses of solid biofuels under different renewable energy support scenarios in the European Union. Apl Energy 131:139–157. doi:10.1016/j.apenergy.2014.05.065

    Google Scholar 

  • Hoogwijk M, Faaij A, Eickhout B, de Vries B, Turkenburg W (2005) Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass Bioenergy 29:225–257. doi:10.1016/j.biombioe.2005.05.002

    Google Scholar 

  • IDAE (2005) Plan de las energías renovables en España 2005–2010, Madrid

  • IDAE (2011) Empleo asociado al impulso de las energías renovables. Estudio Técnico, Madrid

    Google Scholar 

  • IDAE Statistics (2012) Estudios, informes y estadísticas. http://www.idae.es/index.php/idpag.481/relcategoria.1368/relmenu.363/mod.pags/mem.detalle. Accessed 29 Nov 2013

  • International Energy Agency (2010) World Energy Outlook 2010. International Energy Agency

  • International Energy Agency (2011) Technology roadmap: biofuels for transport. International Energy Agency, Paris

    Google Scholar 

  • Iriarte C (2008) Caracterización del olmo (Ulmus pumila L.) como cultivo energético. Dissertation, Universidad Politécnica de Madrid

  • Iriarte A, Rieradevall J, Gabarrell X (2010) Life cycle assessment of sunflower and rapeseed as energy crop under Chilean conditions. J Clean Prod 18:336–345. doi:10.1016/j.jclepro.2009.11.004

    CAS  Google Scholar 

  • Isebrands JG, Karnosky DF (2001) Environmental benefits of poplar culture. In: Dickmann DE, Isebrands JG, Eckenwalder JE, Richardson J (eds) Poplar culture in North America. NRC Research Press, Ottawa, pp 207–218

    Google Scholar 

  • Jianbo L (2006) Energy balance and economic benefits of two agroforestry systems in northern and southern China. Agr Ecosyst Environ 116:255–262. doi:10.1016/j.agee.2006.02.015

    Google Scholar 

  • Jiménez L, Rodríguez A, Ferrer JL, Pérez A, Angulo V (2005) Paulownia, a fast-growing plant, as a raw material for paper manufacturing. Afinidad 62:100–105

    Google Scholar 

  • Jiménez BJA, Perea TF, Lobo GJ, Pavón PL, Durán ZVH (2013a) Evaluación del cultivo del eucalipto para la producción de biomasa en Andalucía. Vida Rural 366:62–66

    Google Scholar 

  • Jiménez BJA, Lobo GJ, Pavón PL, Durán ZVH, Perea TF (2013b) Biomasa de cultivos energéticos para la producción sostenible de energía. Energética XXI 1356:53–55

    Google Scholar 

  • Johnson J, Coleman MUFS, Gesch R, Jaradat A, Mitchell R, Reicosky D (2007) Biomass bioenergy crops in the United States: a changing paradigm. Am J Plant Sci Biotechnol 1:1–18

    Google Scholar 

  • Jones JM, Bridgeman TG, Darwell LI, Gudka B, Saddawi A, Williams A (2012) Combustion properties of torrefied willow compared with bituminous coals. Fuel Process Technol 101:1–9. doi:10.1016/j.fuproc.2012.03.010

    CAS  Google Scholar 

  • Junginger M, van Dam J, Alakangas E, Virkkunen M, Vesterinen P, Veijonen K (2010) Solutions to overcome barriers in bioenergy markets in Europe-D2.2. VTT-R-01700

  • Kalaycioglu H, Deniz I, Hiziroglu S (2005) Some of the properties of particleboard made from Paulownia. J Wood Sci 51:410–414. doi:10.1007/s10086-004-0665-8

    CAS  Google Scholar 

  • Kellezi M, Stafasani M, Kortoci Y (2012) Evaluation of biomass supply chain from Robinia pseudoacacia L. SRF plantations on abandoned lands. J Life Sci 6:187–193

    Google Scholar 

  • Kumar R, Pandey KK, Chandrashekar N, Mohan S (2011) Study of age and height wise variability on calorific value and other fuel properties of Eucalyptus hybrid, Acacia auriculaeformis and Casuarina equisetifolia. Biomass Bioenergy 35:1339–1344. doi:10.1016/j.biombioe.2010.12.031

    CAS  Google Scholar 

  • Kumarmangalam YN, Nanda VB, Henderson K, Frost LJ, Marshay SW, Arun DS, Joshee N (2013) A review of Paulownia biotechnology: a short rotation, fast growing multipurpose bioenergy tree. Am J Plant Sci 4:2070–2082. doi:10.4236/ajps.2013.411259

    Google Scholar 

  • Laborde, D (2011) Assessing the land use change consequences of European biofuels policies. International Food Policy Research Institute (IFPRI). Atlas Consortium

  • Labrecque M, Teodorescu TI (2003) High biomass yield achieved by Salix clones in SRIC following two 3-year coppice rotations on abandoned farmland in southern Quebec, Canada. Biomass Bioenergy 25:135–146. doi:10.1016/S0961-9534(02)00192-7

    Google Scholar 

  • López F, Pérez A, Zamudio MAM, de Alba HE, Garcia JC (2012) Paulownia as raw material for solid biofuel and cellulose pulp. Biomass Bioenergy 45:77–86. doi:10.1016/j.biombioe.2012.05.010

    Google Scholar 

  • Lu J, Zhao X, Ding L (2004) Typical patterns of ecological engineering in southern China. Korean J Eco 27:1–7

    Google Scholar 

  • MAGRAMA (2012) Anuario de estadística agraria. Ministerio de Agricultura Alimentación y Medio Ambiente, Madrid, Spain. http://www.magrama.gob.es/es/agricultura/estadisticas/Estadisticas-chopo.aspx#section. Accessed 25 November 2013

  • Maier J, Vetter R (2004) Biomass yield and fuel characteristics of short-rotation coppice (Willow, Poplar, Empress tree), Institute for Land Management Compatible to Environmental Requirements, http://www.Landwirtschaft-bw.info/servlet/PB/-s/1wc52eejau6d25wkczz14bl9dr p219z/menu/1104921l2/index1109769478375.

  • Malik RK, Green TH, Brown GF, Beyl CA, Sistani KR, Mays DA (2001) Biomass production of short-rotation bioenergy hardwood plantations affected by cover crops. Biomass Bioenergy 21:21–33. doi:10.1016/S0961-9534(01)00017-4

    Google Scholar 

  • Manzone M, Airoldi G, Balsari P (2009) Energetic and economic evaluation of poplar cultivation for the biomass production in Italy. Biomass Bioenergy 33:1258–1264. doi:10.1016/j.biombioe.2009.05.024

    Google Scholar 

  • Martínez GE, Lucas BME, Andrés AM, López SFR, García MFA, del Cerro BA (2010) Aprovechamiento energético de Paulownia spp. en el ámbito Mediterráneo. Rev Montes 102:5–11

    Google Scholar 

  • Matondi PB, Havnevik K, Beyene A (2011) Biofuels, Land Grabbing and Food Security in Africa Zed Books, London, New York

  • McCracken AR, Walsh L, Moore PJ, Lynch M, Cowan P, Dawson M, Watson S (2011) Yield of willow (Salix spp.) grown in short rotation coppice mixtures in a long-term trial. Ann Appl Biol 159:229–243. doi:10.1111/j.1744-7348.2011.00488.x

    Google Scholar 

  • Mitchell CP, Stevens EA, Watters MP (1999) Short rotation forestry-operations, productivity and costs based on experience gained in the UK. Forest Ecol Manag 121:123–136. doi:10.1016/S0378-1127(98)00561-1

    Google Scholar 

  • Moiseyev A, Ince P (2000) Alternative scenarios on SRWC as a fiber source for pulp. In: Paper presented at the third biennial conference, Short-Rotation Woody Crops Operations Working Group, Syracuse, NY

  • Mola YB (2011) Trends and productivity improvements from commercial willow plantations in Sweden during the period 1986–2000. Biomass Bioenergy 35:446–453. doi:10.1016/j.biombioe.2010.09.004

    Google Scholar 

  • Otto S, Loddo D, Zanin G (2010) Weed-poplar competition dynamics and yield loss in Italian short-rotation forestry. Weed Res 50:153–162. doi:10.1111/j.1365-3180.2010.00763.x

    Google Scholar 

  • Pari L, Civitarese V, Giudice A, Assirelli A, Spinelli R, Santangelo E (2013) Influence of chipping device and storage method on the quality of SRC poplar biomass. Biomass Bioenergy 51:169–176. doi:10.1016/j.biombioe.2013.01.019

    CAS  Google Scholar 

  • Pedroli B, Elbersen B, Frederiksen P, Grandin U, Heikkilä R, Henning P, Izakovicová Z, Johansen A, Meiresonne L, Spijker J (2013) Is energy cropping in Europe compatible with biodiversity? Opportunities and threats to biodiversity from land-based production of biomass for bioenergy purposes. Biomass Bioenergy 55:73–86. doi:10.1016/j.biombioe.2012.09.054

    Google Scholar 

  • Pérez S, Renedo CJ, Ortiz A, Mañana M, Silió D (2006) Energy evaluation of the Eucalyptus globulus and the Eucalyptus nitens in the north of Spain (Cantabria). Thermochim Acta 451:57–64. doi:10.1016/j.tca.2006.08.009

    Google Scholar 

  • Pérez CC, Merino A, Rodríguez SR (2011) A management tool for estimating bioenergy production and carbon sequestration in Eucalyptus globulus and Eucalyptus nitens as short rotation woody crops in north-west Spain. Biomass Bioenergy 35:2839–2851. doi:10.1016/j.biombioe.2011.03.020

    Google Scholar 

  • Pérez CC, Sánchez RD, Rodríguez SR, Hernández MJ, Sánchez MM, Cañellas I, Sixto H (2013) Biomass production assessment from Populus spp. short-rotation irrigated crops in Spain. Bioenergy. doi:10.1111/gcbb.12061

    Google Scholar 

  • Pettenella D, Masiero M (2007) Disponibilita di biomasse legnose forestali, agricole e industriali in Italia. In: Gargiulo T, Zoboli R (eds) Una nuova economia de legno-arredo tra industria, energía e cambianento climático. Tipomonza, Milan, pp 171–252

    Google Scholar 

  • Quinkenstein A, Freese D, Böhm C, Tsonkova P, Hüttl RF (2012) Agroforestry for mine-land reclamation in Germany: capitalizing on carbon sequestration and bioenergy production. In: Nair PKR, Garrity D (eds) Agroforestry—the future of global land use, advances in agroforestry 9. Springer Science + Business, Dordrecht, pp 313–339

    Google Scholar 

  • Rédei K, Csiha I, Keserü Z (2011) Black locust (Robinia pseudoacacia L.) short-rotation crops under marginal site conditions. Acta Silv Lign Hung 7:125–132

    Google Scholar 

  • Rosenqvist H, Dawson M (2005) Economics of willow growing in Northern Ireland. Biomass Bioenergy 28:7–14. doi:10.1016/j.biombioe.2004.06.001

    Google Scholar 

  • Rosenqvist H, Berndes G, Borjesson P (2013) The prospects of costs reductions in willow production in Sweden. Biomass Bioenergy 48:139–147. doi:10.1016/j.biombioe.2012.11.013

    Google Scholar 

  • Rosua JM, Pasadas M (2012) Biomass potential in Andalusia, from grapevines, olives, fruit trees and poplar for providing heating in homes. Renew Sust Energy Rev 16:4190–4195. doi:10.1016/j.rser.2012.02.035

    Google Scholar 

  • Rowe RL, Hanley ME, Goulson D, Clarke DJ, Doncaster CP, Taylor G (2011) Potential benefits of commercial willow SRC for farm-scale plant and invertebrate communities in the agri-environment. Biomass Bioenergy 35:325–336. doi:10.1016/j.biombioe.2010.08.046

    Google Scholar 

  • Ruttens A, Boulet J, Weyens N, Smeets K, Adriansen K, Meers E, van Slycken S, Tack F, Meiresonne L, Thewys T, Witters N, Carleer R, Dupae J, Vangronsveld J (2011) Short rotation coppice culture of willows and poplar as energy crops on metal contaminated agricultural soils. Int J Phytoremediation 13:194–207. doi:10.1080/15226514.2011.568543

    PubMed  Google Scholar 

  • RWE (2013) http://www.rwe.com/web/cms/en/398786/rwe-innogy/technologies/biomass/spain/. Accessed 14 October 2013

  • Scarlat N, Dallemand JF, Banja M (2013) Possible impact of 2020 bioenergy targets on European Union land use. A scenario-based assessment from national renewable energy action plans proposals. Renew Sust Energy Rev 18:595–606. doi:10.1016/j.rser.2012.10.040

    Google Scholar 

  • Schmidt WP, Lamersdorf PN (2012) Biomass production with willow and poplar short rotation coppices on sensitive areas-the impact on nitrate leaching and groundwater recharge in a drinking water catchment near Hanover, Germany. Bioener Res 5:546–562. doi:10.1007/s12155-012-9237-8

    Google Scholar 

  • Scholz V, Ellerbrock R (2002) The growth productivity and environmental impact of the cultivation of energy crops on sandy soil in Germany. Biomass Bioenergy 23:81–92. doi:10.1016/S0961-9534(02)00036-3

    CAS  Google Scholar 

  • Schweier J, Becker G (2013) Economics of poplar short rotation coppice plantations on marginal land in Germany. Biomass Bioenergy 59:494–502. doi:10.1016/j.biombioe.2013.10.020

    Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong FX, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240. doi:10.1126/science.1151861

    CAS  PubMed  Google Scholar 

  • Sebastián NF, García GD, Rezeau A (2010) Energía de la biomasa (volumen I). Prensas Universitarias de Zaragoza

  • Sevel L, Nord LT, Raulund KR (2012) Biomass production of four willow clones grown as short rotation coppice on two soil types in Denmark. Biomass Bioenergy 46:664–672. doi:10.1016/j.biombioe.2012.06.030

    Google Scholar 

  • Sevigne E, Gasol MC, Brun F, Rovira L, Pagés JM, Camps F, Rieradevall J, Gabarrell X (2011) Water and energy consumption of Populus spp. bioenergy systems: a case study in Southern Europe. Renew Sust Energ Rev 2:1133–1140. doi:10.1016/j.rser.2010.11.034

    Google Scholar 

  • Smeets EMW, Faaij APC, Lewandowski IM, Turkenburg WC (2007) A bottom-up assessment and review of global bio-energy potentials to 2050. Prog Energ Combust Sci 33:56–106. doi:10.1016/j.pecs.2006.08.001

    CAS  Google Scholar 

  • Sochacki SJ, Harper RJ, Smettem KRJ (2007) Estimation of woody biomass production from a short-rotation bio-energy system in semi-arid Australia. Biomass Bioenergy 31:608–616. doi:10.1016/j.biombioe.2007.06.020

    Google Scholar 

  • Solid Biomass Barometer (2012) EurObserv’ER. http://www.eurobserv-er.org/pdf/baro212biomass.pdf. Accessed 1 November 2013

  • Spinelli R, Nati C, Magagnotti N (2009) Using modifies foragers to harvest short-rotation poplar plantations. Biomass Bioenergy 33:817–821. doi:10.1016/j.biombioe.2009.01.001

    Google Scholar 

  • Stone KC, Hunt PG, Cantrell KB, Ro KS (2010) The potential impacts of biomass feedstock production on water resource availability. Bioresour Technol 101:2014–2025. doi:10.1016/j.biortech.2009.10.037

    CAS  PubMed  Google Scholar 

  • Styles D, Thorne F, Jones MB (2008) Energy crops in Ireland: an economic comparison of willow and Miscanthus production with conventional farming systems. Biomass Bioenergy 32:407–421. doi:10.1016/j.biombioe.2007.10.012

    Google Scholar 

  • Tallis MJ, Casella E, Henshall PA, Aylott MJ, Randle TJ, Morison JIL, Taylor G (2012) Development and evaluation of ForestGrowth-SRC process-based model for short rotation coppice yield and spatial supply reveals poplar uses water more efficiently than willow. GCB Bioenergy 5:53–66. doi:10.1111/j.1757-1707.2012.01191.x

    Google Scholar 

  • Tharakan P, Volk T, Abrahamson L, White E (2003) Energy feedstock characteristics of willow and hybrid poplar clones at harvest age. Biomass Bioenergy 25:571–580. doi:10.1016/S0961-9534(03)00054-0

    CAS  Google Scholar 

  • Thomas SCL, Slater FM, Randerson PF (2010) Reducing the establishment costs of a short rotation willow coppice (SRC)-a trial of a novel layflat planting system at upland in mid-Wales. Biomass Bioenergy 34:677–686. doi:10.1016/j.biombioe.2010.01.011

    Google Scholar 

  • Upreti BR, Horst D (2004) National renewable energy policy and local opposition in the UK: the failed development of a biomass electricity plant. Biomass Bioenergy 26:61–69. doi:10.1016/S0961-9534(03)00099-0

    Google Scholar 

  • Vande WI, Van Camp N, Van de Casteele L, Verheyen K, Lemeur R (2007) Short-rotation forestry of birch, maple, poplar and willow in Flanders (Belgium) I. Biomass production after 4 years of tree growth. Biomass Bioenergy 31:267–275. doi:10.1016/j.biombioe.2007.01.019

    Google Scholar 

  • Veiras X, Soto A (2011) La conflictividad de las plantaciones de eucalipto en España y Portugal. Análisis y propuestas para solucionar la conflictividad ambiental y social de las plantaciones de eucalipto en la península Ibérica. Greenpeace, Madrid

    Google Scholar 

  • Verlinden MS, Broeckx LS, van den Bulcke J, van Acker J, Ceulemans R (2013) Comparative study of biomass determinants of 12 poplar (Populus) genotypes in a high-density short rotation culture. For Ecol Manag 307:101–111. doi:10.1016/j.foreco.2013.06.062

    Google Scholar 

  • Volk TA, Abrahamson LP, Nowak CA, Smart LB, Tharakan PJ, White EH (2006) The development of short-rotation willow in the northeastern United States for bioenergy and bioproducts, agroforestry and phytoremediation. Biomass Bioenergy 30:715–727. doi:10.1016/j.biombioe.2006.03.001

    Google Scholar 

  • Wolf J, Bindraban PS, Luijten JC, Vleeshouwers LM (2003) Exploratory study on the land area required for global food supply and the potential global production of bioenergy. Agr Syst 76:841–861. doi:10.1016/S0308-521X(02)00077-X

    Google Scholar 

  • Yin R, He Q (1997) The spatial and temporal effects of Paulownia intercropping: the case of northern China. Agrofor Syst 37:91–109. doi:10.1023/A:1005837729528

    Google Scholar 

  • Zhou ZC, Shangguan ZP (2005) Soil anti-scouribility enhanced by plant roots. J Integr Plant Biol 47:676–682. doi:10.1111/j.1744-7909.2005.00067.x

    Google Scholar 

Download references

Acknowledgements

This publication was sponsored by the following European project: “European regions fostering innovation for sustainable production and efficient use of woody biomass (ROKWOOD)”, FP7-REGIONS-2012-2013-1, Grant Agreement No. 319956.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Hugo Durán Zuazo.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pleguezuelo, C.R.R., Zuazo, V.H.D., Bielders, C. et al. Bioenergy farming using woody crops. A review. Agron. Sustain. Dev. 35, 95–119 (2015). https://doi.org/10.1007/s13593-014-0262-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-014-0262-1

Keywords

Navigation