Skip to main content
Erschienen in: Network Modeling Analysis in Health Informatics and Bioinformatics 1/2019

01.12.2019 | Original Article

Binding mode of aryloxyphenoxypropionate (FOP) and cyclohexanedione (DIM) groups of herbicides at the carboxyl transferase (CT) domain of Acetyl-CoA carboxylase of Phalaris minor

verfasst von: Priyanka Rani, Juli Kumari, Shikha Agarwal, Durg Vijay Singh

Erschienen in: Network Modeling Analysis in Health Informatics and Bioinformatics | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Phalaris minor (P. minor) is a major weed of wheat crop. It has developed resistance as well as cross-resistance against aryloxyphenoxypropionates (FOP) and cyclohexanediones (DIM) group of herbicides, probably due to mutations in the binding site of acetyl-CoA carboxylase (ACCase) at its carboxyl transferase domain (CT-domain). Binding of FOP and DIM group of herbicides inhibits de novo synthesis of fatty acids, which is essential for survival of P. minor. This work highlights atomistic details of binding mode of diclofop (FOP) and tepraloxydim (DIM) groups of herbicides in the CT-domain of modelled P. minor ACCase protein. Molecules have been extracted from ZINC database based upon their 2D structural similarities with existing FOP and DIM groups of herbicides, which has been further screened at FOP- and DIM-binding sites of the modelled protein. Rigid and flexible docking has been performed to prioritise hits considering the diclofop and tepraloxydim as a reference. Finally, two molecules of the FOP group and three molecules of DIM group have been obtained that have shown better predicted binding affinity, ligand efficiency, and inhibition constant as compared to the reference molecules. Molecular dynamics simulation of about 10 ns was performed for both the reference molecules as well as for all the five prioritised molecules to determine their conformational stability and prominent H-bond network. Amino acid residues A56 and I160 of D1 protein are equivalent to A1705 and I1181 amino acids of black grass, as well as A1627 and I1735 amino acids of yeast (PDB ID: 1UYR) forms invariant hydrogen bond with reference and screened molecules. It was concluded that common binding features of FOP and DIM may be utilised for development of bitopic herbicide.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Berendsen HJ, Postma JP, Van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. Intermolecular forces. Springer, Dordrecht, pp 331–342CrossRef Berendsen HJ, Postma JP, Van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. Intermolecular forces. Springer, Dordrecht, pp 331–342CrossRef
Zurück zum Zitat Chhokar RS, Malik RK (2002) Isoproturon-resistant littleseed canarygrass (Phalaris minor) and its response to alternate herbicides. Weed Technol 16(1):116–123CrossRef Chhokar RS, Malik RK (2002) Isoproturon-resistant littleseed canarygrass (Phalaris minor) and its response to alternate herbicides. Weed Technol 16(1):116–123CrossRef
Zurück zum Zitat Chhokar RS, Sharma RK, Singh RK, Gill SC, Meena RP (2015) Ready mix combination of pinoxaden and clodinafop for efficient control of grass weeds in wheat. J Wheat Res 7(1):55–58 Chhokar RS, Sharma RK, Singh RK, Gill SC, Meena RP (2015) Ready mix combination of pinoxaden and clodinafop for efficient control of grass weeds in wheat. J Wheat Res 7(1):55–58
Zurück zum Zitat Darden T, York D, Pedersen I (1993) Particle mesh Ewald: an Nlog (N) method for Ewald sum in large systems. J chem Phys 98(12):10089–10092CrossRef Darden T, York D, Pedersen I (1993) Particle mesh Ewald: an Nlog (N) method for Ewald sum in large systems. J chem Phys 98(12):10089–10092CrossRef
Zurück zum Zitat Delye C, Matejicek A, Michel S (2008) Cross-resistance patterns to ACCase inhibiting herbicides conferred by mutant ACCase isoforms in Alopecurus Myosuroides Huds. (black-grass), re-examined at the recommended herbicide field rate. Pest Manag Sci 64(11):1179–1186CrossRef Delye C, Matejicek A, Michel S (2008) Cross-resistance patterns to ACCase inhibiting herbicides conferred by mutant ACCase isoforms in Alopecurus Myosuroides Huds. (black-grass), re-examined at the recommended herbicide field rate. Pest Manag Sci 64(11):1179–1186CrossRef
Zurück zum Zitat Fiser A, Sali A (2003) Modeller: generation and refinement of homology based protein structure models. Methods Enzymol 374:461–491CrossRef Fiser A, Sali A (2003) Modeller: generation and refinement of homology based protein structure models. Methods Enzymol 374:461–491CrossRef
Zurück zum Zitat Gherekhloo J, Osuna MD, Deparado R (2012) Biochemical and molecular basis of resistance to ACCase-inhibiting herbicides in Iranian Phalaris minor populations. Weed Res 52(4):367–372CrossRef Gherekhloo J, Osuna MD, Deparado R (2012) Biochemical and molecular basis of resistance to ACCase-inhibiting herbicides in Iranian Phalaris minor populations. Weed Res 52(4):367–372CrossRef
Zurück zum Zitat Goodsell DS, Morris GM, Olson AJ (1996) Automated docking of flexible ligand: application of autodock. J Mol Recognit 9(1):1–5CrossRef Goodsell DS, Morris GM, Olson AJ (1996) Automated docking of flexible ligand: application of autodock. J Mol Recognit 9(1):1–5CrossRef
Zurück zum Zitat Gornicki P, Faris J, King I, Podkowinski J, Gill B, Haselkorn R (1997) Plastid localized acetyl-CoA carboxylase of bread wheat is encoded by a single gene on each of the three ancestral chromosome sets. Proc Natl Acad Sci 94(14):179–184 Gornicki P, Faris J, King I, Podkowinski J, Gill B, Haselkorn R (1997) Plastid localized acetyl-CoA carboxylase of bread wheat is encoded by a single gene on each of the three ancestral chromosome sets. Proc Natl Acad Sci 94(14):179–184
Zurück zum Zitat Herbert D, Walker K, Price L, Cole D, Pallett KE, Ridley SM, Harwood JL (1997) Acetyl-CoA carboxylase: a graminicide target site. Pestic Sci 50(1):67–71CrossRef Herbert D, Walker K, Price L, Cole D, Pallett KE, Ridley SM, Harwood JL (1997) Acetyl-CoA carboxylase: a graminicide target site. Pestic Sci 50(1):67–71CrossRef
Zurück zum Zitat Hess B, Bekker H, Berendsen HJ, Fraaije JG (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472CrossRef Hess B, Bekker H, Berendsen HJ, Fraaije JG (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472CrossRef
Zurück zum Zitat Hess B, Kutzner C, Spoel D, Lindahl E (2015) Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447CrossRef Hess B, Kutzner C, Spoel D, Lindahl E (2015) Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447CrossRef
Zurück zum Zitat Hoffer U, Muehlebach M, Hole S, Zoschke A (2006) Pinoxaden for broad spectrum grass weed management in cereal crops. J Plant Dis Protect 20(5):989–995 Hoffer U, Muehlebach M, Hole S, Zoschke A (2006) Pinoxaden for broad spectrum grass weed management in cereal crops. J Plant Dis Protect 20(5):989–995
Zurück zum Zitat Incledon BJ, Hall CJ (1997) Acetyl-coenzyme a carboxylase: quaternary structure and inhibition by graminicide herbicides. Pestic Biochem Physiol 57(3):255–271CrossRef Incledon BJ, Hall CJ (1997) Acetyl-coenzyme a carboxylase: quaternary structure and inhibition by graminicide herbicides. Pestic Biochem Physiol 57(3):255–271CrossRef
Zurück zum Zitat Kishore G, Singh DV (2018) Isoproturon tolerance and resistance in Phalaris minor: sequence and structural similarity in Phalaris minor and wheat D1 protein. Pestic Res J 30(2):246–250CrossRef Kishore G, Singh DV (2018) Isoproturon tolerance and resistance in Phalaris minor: sequence and structural similarity in Phalaris minor and wheat D1 protein. Pestic Res J 30(2):246–250CrossRef
Zurück zum Zitat Kukorelli G, Reisinger P, Pinke G (2013) ACCase inhibitor herbicide-selectivity, weed resistance and fitness cost: a review. Int J Pest Manag 59(3):165–173CrossRef Kukorelli G, Reisinger P, Pinke G (2013) ACCase inhibitor herbicide-selectivity, weed resistance and fitness cost: a review. Int J Pest Manag 59(3):165–173CrossRef
Zurück zum Zitat Laskowski RA, MacArthur MW, Moss DS, Thornton J (1993) PROCHECK: A program to check the stereochemical quality of protein structure. J Appl Cryst 26(2):283–291CrossRef Laskowski RA, MacArthur MW, Moss DS, Thornton J (1993) PROCHECK: A program to check the stereochemical quality of protein structure. J Appl Cryst 26(2):283–291CrossRef
Zurück zum Zitat Linda PC, Yu KYS, Liang T (2010) Mechanism for the inhibition of the Carboxyltransferase domain of acetyl-coenzyme A carboxylase by Pinoxaden. Proc Natl Acad Sci 107(51):22072–22077CrossRef Linda PC, Yu KYS, Liang T (2010) Mechanism for the inhibition of the Carboxyltransferase domain of acetyl-coenzyme A carboxylase by Pinoxaden. Proc Natl Acad Sci 107(51):22072–22077CrossRef
Zurück zum Zitat Liu W, Harrison DK, Chalupska D, Gornicki P, O’Donnell CC, Adkins SW, Haselkorn R, Williams RR (2007) Single-site mutations in the carboxyltransferase domain of plastid acetyl-CoA carboxylase confer resistance to grass-specific herbicides. Proc Natl Acad Sci 104(9):3627–3632CrossRef Liu W, Harrison DK, Chalupska D, Gornicki P, O’Donnell CC, Adkins SW, Haselkorn R, Williams RR (2007) Single-site mutations in the carboxyltransferase domain of plastid acetyl-CoA carboxylase confer resistance to grass-specific herbicides. Proc Natl Acad Sci 104(9):3627–3632CrossRef
Zurück zum Zitat Malik RK, Singh S (1995) Littleseed canarygrass (Phalaris minor) resistance to isoproturon in India. Weed Technol 9(3):419–425CrossRef Malik RK, Singh S (1995) Littleseed canarygrass (Phalaris minor) resistance to isoproturon in India. Weed Technol 9(3):419–425CrossRef
Zurück zum Zitat Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19(14):1639–1662CrossRef Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19(14):1639–1662CrossRef
Zurück zum Zitat Rao AN, Nagamani A (2010) Integrated weed management in India—revisited. Indian J Weed Science 42(3–4):123–135 Rao AN, Nagamani A (2010) Integrated weed management in India—revisited. Indian J Weed Science 42(3–4):123–135
Zurück zum Zitat Schüttelkopf AW, van Aalten DMF (2004) PRODRG—a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr 60(8):1355–1363 Schüttelkopf AW, van Aalten DMF (2004) PRODRG—a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr 60(8):1355–1363
Zurück zum Zitat Singh DV, Gaur AK, Mishra DP (2004) Biochemical and molecular mechanisms of resistance against isoproturon in Phalaris minor: variations in protein and RAPD profiles of isoproturon resistant and sensitive Phalaris minor biotypes. Indian J Weed Sci 36(3and4):256–259 Singh DV, Gaur AK, Mishra DP (2004) Biochemical and molecular mechanisms of resistance against isoproturon in Phalaris minor: variations in protein and RAPD profiles of isoproturon resistant and sensitive Phalaris minor biotypes. Indian J Weed Sci 36(3and4):256–259
Zurück zum Zitat Singh DV, Adeppa K, Misra K (2012a) Mechanism of isoproturon resistance in Phalaris minor: in silico design, synthesis and testing of some novel herbicides for regaining sensitivity. Mol Model 18(4):1431–1445CrossRef Singh DV, Adeppa K, Misra K (2012a) Mechanism of isoproturon resistance in Phalaris minor: in silico design, synthesis and testing of some novel herbicides for regaining sensitivity. Mol Model 18(4):1431–1445CrossRef
Zurück zum Zitat Singh DV, Agarwal S, Kesharwani RK, Misra K (2012b) Molecular modelling and computational simulation of the photosystem-II reaction center to address isoproturon resistance in Phalaris minor. J Mol Model 18(8):3903–3913CrossRef Singh DV, Agarwal S, Kesharwani RK, Misra K (2012b) Molecular modelling and computational simulation of the photosystem-II reaction center to address isoproturon resistance in Phalaris minor. J Mol Model 18(8):3903–3913CrossRef
Zurück zum Zitat Trott O, Olson AJ (2010) AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comp Chem 31(2):455–461 Trott O, Olson AJ (2010) AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comp Chem 31(2):455–461
Zurück zum Zitat Wiederstein M, Sippl MJ (2007) ProSA-Web: Interactive web service for the recognition of errors in three-dimensional structures of protein. Nucleic Acids Res 35(suppl_2):407–410CrossRef Wiederstein M, Sippl MJ (2007) ProSA-Web: Interactive web service for the recognition of errors in three-dimensional structures of protein. Nucleic Acids Res 35(suppl_2):407–410CrossRef
Zurück zum Zitat Xiang S, Callaghan MM, Watson KG, Tong LA (2009) Different mechanism for the inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase by tepraloxydim. Proc Natl Acad Sci 106(49):20723–20727CrossRef Xiang S, Callaghan MM, Watson KG, Tong LA (2009) Different mechanism for the inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase by tepraloxydim. Proc Natl Acad Sci 106(49):20723–20727CrossRef
Zurück zum Zitat Yasin M, Iqbal Z (2011) Chemical control of grassy weeds in wheat (Triticum aestivum L.). Lap Lambert Academy, Saarbrücken Yasin M, Iqbal Z (2011) Chemical control of grassy weeds in wheat (Triticum aestivum L.). Lap Lambert Academy, Saarbrücken
Zurück zum Zitat Yu Q, Collavo A, Zheng MQ, Owen M, Sattin M, Powles SB (2007) Diversity of acetyl-coenzyme A carboxylase mutations in resistant Lolium populations: evaluation using clethodim. Plant Physiol 145(2):547–558CrossRef Yu Q, Collavo A, Zheng MQ, Owen M, Sattin M, Powles SB (2007) Diversity of acetyl-coenzyme A carboxylase mutations in resistant Lolium populations: evaluation using clethodim. Plant Physiol 145(2):547–558CrossRef
Zurück zum Zitat Zhang H, Tweel B, Tong L (2004) Molecular basis for the inhibition of the carboxyltransferase domain of acetyl-coenzyme a carboxylase by haloxyfop and diclofop. Proc Natl Acad Sci 101(16):5910–5915CrossRef Zhang H, Tweel B, Tong L (2004) Molecular basis for the inhibition of the carboxyltransferase domain of acetyl-coenzyme a carboxylase by haloxyfop and diclofop. Proc Natl Acad Sci 101(16):5910–5915CrossRef
Zurück zum Zitat Zhu XL, Ge-Fei H, Zhan CG, Yang GF (2009) Computational simulations of the interactions between acetyl-coenzyme a carboxylase and clodinafop: resistance mechanism due to active and nonactive site mutations. J Chem Inf Model 49(8):1936–1943CrossRef Zhu XL, Ge-Fei H, Zhan CG, Yang GF (2009) Computational simulations of the interactions between acetyl-coenzyme a carboxylase and clodinafop: resistance mechanism due to active and nonactive site mutations. J Chem Inf Model 49(8):1936–1943CrossRef
Metadaten
Titel
Binding mode of aryloxyphenoxypropionate (FOP) and cyclohexanedione (DIM) groups of herbicides at the carboxyl transferase (CT) domain of Acetyl-CoA carboxylase of Phalaris minor
verfasst von
Priyanka Rani
Juli Kumari
Shikha Agarwal
Durg Vijay Singh
Publikationsdatum
01.12.2019
Verlag
Springer Vienna
Erschienen in
Network Modeling Analysis in Health Informatics and Bioinformatics / Ausgabe 1/2019
Print ISSN: 2192-6662
Elektronische ISSN: 2192-6670
DOI
https://doi.org/10.1007/s13721-019-0190-8

Weitere Artikel der Ausgabe 1/2019

Network Modeling Analysis in Health Informatics and Bioinformatics 1/2019 Zur Ausgabe