Skip to main content
Log in

Preparation of high-refractive-index PMMA/TiO2 nanocomposites by one-step in situ solvothermal method

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

High-refractive index polymeric materials, which are transparent, have many promising applications in optical design and advanced optoelectronic fabrication. In order to improve the refractive index of polymeric materials, inorganic materials with high-refractive index, such as TiO2, are always added into polymers. However, some of the traditional synthetic methods are complicated and hard to control. In our work, we developed a novel and simple method, a one-step in situ solvothermal method, to prepare poly(methyl methacrylate) (PMMA) and nano-TiO2 hybrid films. Methyl methacrylate (MMA), vinyltrimethoxysilane (VTMO), titanium butoxide [Ti(OBu)4], ethanol, hydrochloric acid, azobis-isobutyronitrile and tetrahydrofuran were added into a reaction vessel altogether and the polymerization of PMMA matrix and the formation of nano-TiO2 composite carried out simultaneously. To improve the adhesion between PMMA and TiO2, VTMO was used as a comonomer. The results indicate that TiO2 nanoparticles produced by decomposition of titanium butoxide are dispersed homogeneously in the PMMA matrix. The size of TiO2 crystals in PMMA/TiO2 nanocomposites is about 5–6 nm. The hybrid films have a good transparency (over 80 %) in the visible region, a good thermal stability and a UV-shielding property after the incorporation of TiO2. The refractive index of as-formed PMMA/TiO2 nanocomposites increases up to 1.839 at 633 nm as the content of Ti(OBu)4 is 50.00 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PMMA:

Poly(methyl methacrylate)

VTMO:

Vinyltrimethoxysilane

Ti(OBu)4):

Titanium butoxide

RI:

Refractive index

HPC:

Hydroxypropylcellulose

APTMOS:

(3-Acryloxypropyl) trimethoxysilane

MMA:

Methyl methacrylate

THF:

Tetrahydrofuran

AIBN:

Azobis-isobutyronitrile

References

  1. Lee LH, Chen WC (2001) High-refractive-index thin films prepared from trialkoxysilane-capped poly(methyl methacrylate)-titania materials. Chem Mater 13:1137–1142

    Article  CAS  Google Scholar 

  2. Tojo Y, Arakwa Y, Watanabe J, Konishi G (2013) Synthesis of high refractive index and low-birefringence acrylate polymers with a tetraphenylethane skeleton in the side chain. Polym Chem 4:3807–3812

    Article  CAS  Google Scholar 

  3. Liu SJ, Tian LY, Zheng Z, Wang XL (2009) Study on the optical properties of sulfur-containing poly(methyl methacrylate)-inorganic hybrid. J Appl Polym Sci 113:3498–3503

    Article  CAS  Google Scholar 

  4. Lü CL, Yang B (2009) High refractive index organic–inorganic nanocomposites: design, synthesis and application. J Mater Chem 19:2884–2901

    Article  Google Scholar 

  5. Arrachart G, Karatchevtseva I, Heinemann A, Cassidy DJ, Triani G (2011) Synthesis and characterization of nanocomposite materials prepared by dispersion of functional TiO2 nanoparticles in PMMA matrix. J Mater Chem 21:13040–13046

    Article  CAS  Google Scholar 

  6. Zhang GY, Zhang JB, Yang B (2013) Fabrication of polymerizable ZnS nanoparticles in N,N′-dimethylacrylamide and the resulting high refractive index optical materials. Polym Chem 4:3963–3967

    Article  CAS  Google Scholar 

  7. Djaoued Y, Ozga K, Wojciechowski A, Reshak AH, Robichaud J, Kityk IV (2010) Photoinduced effects in TiO2 nanocrystalline films with different morphology. J Alloys Compd 508:599–605

    Article  CAS  Google Scholar 

  8. Tkaczyk S, Galceran M, Kret S, Pujol MC, Mc Aguiló, Díaz F, Reshak AH, Kityk IV (2008) UV-excited piezo-optical effects in oxide nanocrystals incorporated into PMMA matrices. Acta Mater 56:5677–5684

    Article  CAS  Google Scholar 

  9. Wang F, Luo ZK, Qing SG, Qiu Q, Li RF (2009) Sol-gel derived titania hybrid thin films with high refractive index. J Alloys Compd 486:521–526

    Article  CAS  Google Scholar 

  10. Deng KL, Ren XB, Jiao YS, Tian H, Zhang PF, Zhong HB, Liu YH (2010) Preparation of poly(methyl acrylate)/TiO2 composites by potassium diperiodatocuprate initiated grafting copolymerization. Iran Polym J 19:17–25

    CAS  Google Scholar 

  11. Rao YQ, Chen S (2008) Molecular composites comprising TiO2 and their optical properties. Macromolecules 41:4838–4844

    Article  CAS  Google Scholar 

  12. Sangermano M, Voit B, Sordo F, Eichhorn KJ, Rizza G (2008) High refractive index transparent coatings obtained via UV/thermal dual-cure process. Polymer 49:2018–2022

    Article  CAS  Google Scholar 

  13. Yuwono AH, Xue JM, Wang J, Elim HI, Ji W, Li Y, White TJ (2003) Transparent nanohybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behavior. J Mater Chem 13:1475–1479

    Article  CAS  Google Scholar 

  14. Du WC, Wang HT, Zhong W, Shen L, Du QG (2005) High refractive index films prepared from titanium chloride and methyl methacrylate via a non-aqueous sol–gel route. J Sol-Gel Sci Technol 34:227–231

    Article  CAS  Google Scholar 

  15. Oda S, Uchiyama H, Kozuka H (2012) Sol–gel-derived titania-hydroxypropylcellulose hybrid thin films of high refractive indices: solution components affecting the refractive index and uncracking critical thickness. J Sol-Gel Sci Technol 61:484–493

    Article  CAS  Google Scholar 

  16. Zeng XF, Kong XR, Ge JL, Liu HT, Gao C, Shen ZG, Chen JF (2011) Effective solution mixing method to fabricate highly transparent and optical functional organic-inorganic nanocomposite film. Ind Eng Chem Res 50:3253–3258

    Article  CAS  Google Scholar 

  17. Zhang JM, Gao JG, Sun XG, Peng Z, Diao JZ (2007) Preparation and characterization of TiO2/poly(St-co-MAA) core/shell composite particles. Iran Polym J 16:39–46

    Google Scholar 

  18. Nussbaumer RJ, Caseri WR, Smith P, Tervoort T (2003) Polymer-TiO2 nanocomposites: a route towards visually transparent broadband UV filters and high refractive index materials. Macromol Mater Eng 288:44–49

    Article  CAS  Google Scholar 

  19. Demir M, Koynov K, Akbey Ü, Bubeck C, Park I, Lieberwirth I, Wegner G (2007) Optical properties of composites of PMMA and surface-modified zincite nanoparticles. Macromolecules 40:1089–1100

    Article  CAS  Google Scholar 

  20. Inkyo M, Tokunaga Y, Tahara T, Iwaki T, Iskandar F, Hogan CJ Jr, Okuyama K (2008) Beads mill-assisted synthesis of poly methyl methacrylate (PMMA)–TiO2 nanoparticle composites. Ind Eng Chem Res 47:2597–2604

    Article  CAS  Google Scholar 

  21. Tao P, Li Y, Rungta A, Viswanath A, Gao JN, Benicewicz BC, Siegel RW, Schadler LS (2011) TiO2 nanocomposites with high refractive index and transparency. J Mater Chem 21:18623–18629

    Article  CAS  Google Scholar 

  22. Zhang C, Kang ZH, Shen EH, Wang EB, Gao L, Luo F, Tian CG, Wang CL, Lan Y, Li JX, Cao XJ (2006) Synthesis and evolution of PbS nanocrystals through a surfactant-assisted solvothermal route. J Phys Chem B 110:184–189

    Article  CAS  Google Scholar 

  23. Demazeau G (1999) Solvothermal processes: a route to the stabilization of new materials. J Mater Chem 9:15–18

    Article  CAS  Google Scholar 

  24. Qi RR, Chen ZF, Zhou CX (2005) Solvothermal preparation of maleic anhydride grafted onto acrylonitrile–butadiene–styrene terpolymer (ABS). Polymer 46:4098–4104

    Article  CAS  Google Scholar 

  25. Yu J, Qi RR, Liu QC (2010) Solvothermal process for grafting dibutylmaleate onto poly(ethylene-co-1-octene). J Appl Polym Sci 116:298–303

    Article  CAS  Google Scholar 

  26. Jin JY, Qi RR, Hu XL, Luo Y, Lu JQ (2012) Preparation of MMA–silane copolymer by solvothermal method. Chinese Patent CN102504085A

  27. Zhang HY, Qi RR, Tong MK, Su YZ, Huang M (2012) In situ solvothermal synthesis and characterization of transparent epoxy/TiO2 nanocomposites. J Appl Polym Sci 125:1152–1160

    Article  CAS  Google Scholar 

  28. Lee S, Shin HJ, Yoon SM, Yi DK, Choi JY, Paik U (2008) Refractive index engineering of transparent ZrO2–polydimethylsiloxane nanocomposites. J Mater Chem 18:1751–1755

    Article  CAS  Google Scholar 

  29. Su HW, Chen WC (2008) High refractive index polyimide–nanocrystalline-titania hybrid optical materials. J Mater Chem 18:1139–1145

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work described in this paper was supported by the National Science Foundation of China (Nos: 21173145 and 51133003) and Shanghai Leading Academic Discipline Project (No. B202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongrong Qi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, J., Qi, R., Su, Y. et al. Preparation of high-refractive-index PMMA/TiO2 nanocomposites by one-step in situ solvothermal method. Iran Polym J 22, 767–774 (2013). https://doi.org/10.1007/s13726-013-0175-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-013-0175-x

Keywords

Navigation