Skip to main content
Log in

Characterization of cationic parenchyma cellulose derivative by rapid preparation of low microwave power

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

A rapid microwave-assisted cationic synthesis of cellulosic polymer by grafting glycidyl trimethyl ammonium chloride (GTMAC) onto parenchyma cellulose (PC) from bagasse pith under low-power condition is reported. The effects of the microwave power, exposure time, GTMAC charge, water content, and aqueous-organic solvents by volume ratio were evaluated by determining cationization parameters such as yield, degree of substitution (DS), zeta potential, and charge density. The experimental results showed that the water-soluble and -insoluble fractions of cationic parenchyma cellulose (CPC) were obtained and their optimal DS were determined to be 0.72 and 0.63 at the microwave power of 100 W for 20 min, respectively. Surface cationization of PC resulted in an increase in zeta potential and charge density over the unmodified cellulose. In comparison with the original PC, the intrinsic viscosity of the cationic products decreased significantly. The presence of GTMAC on the surface of PC was confirmed by Fourier transform infrared spectroscopy. The crystallinity and surface structure of original cellulose and CPCs were also analyzed through X-ray diffraction and scanning electron microscopy, respectively. This work provided an efficient and economical feasibility to produce a cationic biopolymer from cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Ngo YH, Li D, Simon GP, Garnier G (2013) Effect of cationic polyacrylamides on the aggregation and SERS performance of gold nanoparticles-treated paper. J Colloid Interface Sci 392:237–246

    Article  CAS  Google Scholar 

  2. Nasser MS, Twaiq FA, Onaizi SA (2013) Effect of polyelectrolytes on the degree of flocculation of papermaking suspensions. Sep Purif Technol 103:43–52

    Article  CAS  Google Scholar 

  3. Yoon DH, Jang JW, Cheong IW (2012) Synthesis of cationic polyacrylamide/silica nanocomposites from inverse emulsion polymerization and their flocculation property for papermaking. Colloids Surf A 411:18–23

    Article  CAS  Google Scholar 

  4. Khatri Z, Mayakrishnan G, Hirata Y, Wei K, Kim IS (2013) Cationic-cellulose nanofibers: preparation and dyeability with anionic reactive dyes for apparel application. Carbohydr Polym 91:434–443

    Article  CAS  Google Scholar 

  5. Baliarsingh S, Jena J, Das T, Das NB (2013) Role of cationic and anionic surfactants in textile dyeing with natural dyes extracted from waste plant materials and their potential antimicrobial properties. Ind Crops Prod 50:618–624

    Article  CAS  Google Scholar 

  6. Wang KZ, Wang CX, Wang CY (2013) Acrylic yarns dyeing properties of cationic ultra-fine pigment modified by TDBAC. Colloids Surf A 431:114–119

    Article  CAS  Google Scholar 

  7. Sirviö J, Honka A, Liimatainen H, Niinimäki J, Hormi O (2011) Synthesis of highly cationic water-soluble cellulose derivative and its potential as novel biopolymeric flocculation agent. Carbohydr Polym 86:266–270

    Article  Google Scholar 

  8. Pang X, Wu J, Chu CC, Chen XS (2014) Development of an arginine-based cationic hydrogel platform: synthesis, characterization and biomedical applications. Acta Biomater 10:3098–3107

    Article  CAS  Google Scholar 

  9. Rao PH, Lo IMC, Yin K, Tang SCN (2011) Removal of natural organic mater by cationic hydrogel with magnetic properties. J Environ Manage 92:1690–1695

    Article  CAS  Google Scholar 

  10. Petzold G, Schönberger L, Genest S, Schwarz S (2012) Interaction of cationic starch and dissolved colloidal substances from paper recycling, characterized by dynamic surface measurements. Colloids Surf A 413:162–168

    Article  CAS  Google Scholar 

  11. Han DS, Kim YM, Kim HY, Cho IS, Kim JD (2014) Study of adsorption behaviors on a SiO2 surface using alkyl cationic modified starches. Colloids Surf A 441:449–458

    Article  CAS  Google Scholar 

  12. Hansel PA, Riefler RG, Stuart BJ (2014) Efficient flocculation of microalgae for biomass production using cationic starch. Algal Res 5:133–139

    Article  Google Scholar 

  13. Ghimici L, Nichifor M (2014) Flocculation performance of different cationic amphiphilic dextran derivatives in zirconium silicate suspension. Sep Purif Technol 133:254–259

    Article  CAS  Google Scholar 

  14. Ghimici L, Nichifor M (2013) Separation of TiO2 particles from water and water/methanol mixtures by cationic dextran derivatives. Carbohydr Polym 98:1637–1643

    Article  CAS  Google Scholar 

  15. Mocanu G, Nichior M (2014) Cationic amphiphilic dextran hydrogels with potential biomedical applications. Carbohydr Polym 99:235–241

    Article  CAS  Google Scholar 

  16. Miranda R, Nicu R, Latour I, Lupei M, Bobu E, Blanco A (2013) Efficiency of chitosans for the treatment of papermaking process water by dissolved air flotation. Chem Eng J 231:304–313

    Article  CAS  Google Scholar 

  17. Fàbregas A, Miňarro M, García-Montoya E, García-Montoya P, Carrillo C, Sarrate R, Sánchez N, Ticó JR, Suiňé-Negre JM (2013) Impact of physical parameters on particle size and reaction yield when using the ionic gelation method to obtain cationic polymeric chitosan-tripolyphosphate nanoparticles. Int J Pharm 446:199–204

    Article  Google Scholar 

  18. Mocchiutti P, Galván MV, Peresin MS, Schnell CN, Zanuttini MA (2015) Complexes of xylan and synthetic polyelectrolytes. Characterization and adsorption onto high quality unbleached fibres. Carbohydr Polym 116:131–139

    Article  CAS  Google Scholar 

  19. Vega B, Petzold-Welcke K, Fardim P, Heinze T (2012) Studies on fibre surfaces modified with xylan polyelectrolytes. Carbohydr Polym 89:768–776

    Article  CAS  Google Scholar 

  20. Tehrani AD, Neysi E (2013) Surface modification of cellulose nanowhisker throughout graft polymerization of 2-ethyl-2-oxazoline. Carbohydr Polym 97:98–104

    Article  Google Scholar 

  21. Mazoniene E, Joceviciute S, Kazlauske J, Niemeyer B, Liesiene J (2011) Interaction of cellulose-based cationic polyelectrolytes with mucin. Colloids Surf B 83:160–164

    Article  CAS  Google Scholar 

  22. dos Santos S, Piculell L, Medronoho B, Miguel MG, Lindman B (2012) Phase behavior and rheological properties of DNA-cationic polysaccharide mixtures. J Colloid Interface Sci 383:63–74

    Article  Google Scholar 

  23. Kono H, Kusumoto R (2014) Preparation, structural characterization, and flocculation ability of amphoteric cellulose. React Funct Polym 82:111–119

    Article  CAS  Google Scholar 

  24. Song Y, Sun Y, Zhang X, Zhou J, Zhang L (2008) Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers. Biomacromolecules 9:2259–2264

    Article  CAS  Google Scholar 

  25. Yu H, Liu RG, Shen DW, Wu ZH, Huang Y (2008) Arrangement of cellulose microfibrils in the wheat straw cell wall. Carbohydr Polym 72:122–127

    Article  CAS  Google Scholar 

  26. Gao X, Keli Chen, Zhang H, Peng LC (2014) The preparation of soluble cellouronic acid sodium salt by 4-acetamide-TEMPO mediated oxidation of ultrasound-pretreated parenchyma cellulose from bagasse pith. Arch Acoust 39:267–275

    Google Scholar 

  27. Liu ZH, Ni YH, Fatehi P, Saeed A (2011) Isolation and cationization of hemicelluloses from pre-hydrolysis liquor of kraft-based dissolving pulp production process. Biomass Bioenergy 35:1789–1796

    Article  CAS  Google Scholar 

  28. Zaman M, Xiao HN, Chibante F, Ni YH (2012) Synthesis and characterization of cationically modified nanocrystalline cellulose. Carbohydr Polym 89:163–170

    Article  CAS  Google Scholar 

  29. Prado HJ, Matulewicz MC (2014) Cationization of polysaccharides: a path to greener derivatives with many industrial applications. Eur Polym J 52:53–75

    Article  CAS  Google Scholar 

  30. Li SM, Jia N, Zhu JF, Ma MG, Xu F, Wang B, Sun RC (2011) Rapid microwave-assisted preparation and characterization of cellulose-silver nanocomposites. Carbohydr Polym 83:422–429

    Article  CAS  Google Scholar 

  31. Kahrilas GA, Wally LM, Fredrick SJ, Hiskey M, Prieto AL, Owens JE (2014) Microwave-assisted green synthesis of silver nanoparticles using orange peel extract. ACS Sustain Chem Eng 2:367–376

    Article  CAS  Google Scholar 

  32. Hesas RH, Daud WMAW, Sahu JN, Niya AA (2013) The effects of a microwave heating method on the production of activated carbon from agricultural waste: a review. J Anal Appl Pyrol 100:1–11

    Article  Google Scholar 

  33. Bigdeli S, Fatemi S (2015) Fast carbon nanofiber growth on the surface of activated carbon by microwave irradiation: a modified nano-adsorbent for deep desulfurization of liquid fuels. Chem Eng J 269:306–315

    Article  CAS  Google Scholar 

  34. Saucier C, Adebayo MA, Lima EC, Cataluña R, Thue PS, Prola LDT, Puchana-Rosero MJ, Machado FM, Pavan FA, Dotto GL (2015) Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents. J Hazard Mater 289:18–27

    Article  CAS  Google Scholar 

  35. Kazmierczak-Razna J, Gralak-Podemska B, Nowicki P, Pietrzak R (2015) The use of microwave radiation for obtaining activated carbons from sawdust and their potential application in removal of NO2 and H2S. Chem Eng J 269:352–358

    Article  CAS  Google Scholar 

  36. Zafar F, Sharmin E, Zafar H, Shah MY, Nishat N, Ahmad S (2015) Facile microwave-assisted preparation of waterborne polyesteramide/OMMT clay bio-nanocomposites for protective coatings. Ind Crops Prod 67:484–491

    Article  CAS  Google Scholar 

  37. Mishra SK, Ferreira JMF, Kannan S (2015) Mechanically stable antimicrobial chitosan-PVA-silver nanocomposite coatings deposited on titanium implants. Carbohydr Polym 121:37–48

    Article  CAS  Google Scholar 

  38. Deng F, Fu LH, Ma MG (2015) Microwave-assisted rapid synthesis and characterization of CaF2 particles-filled cellulose nanocomposites in ionic liquid. Carbohydr Polym 121:163–168

    Article  CAS  Google Scholar 

  39. Singh RP, Pal S, Rana VK, Ghorai S (2013) Amphoteric amylopectin: a novel polymeric flocculant. Carbohydr Polym 91:294–299

    Article  CAS  Google Scholar 

  40. Gao X, Chen KL, Zhang H, Peng LC, Liu QX (2014) Isolation and characterization of cellulose obtained from bagasse pith by oxygen-containing agents. BioResources 9:4094–4107

    Google Scholar 

  41. Ayouba A, Berzin F, Tighzert L, Bliard C (2004) Study of the thermoplastic wheat starch cationization reaction under molten condition. Strach 56:513–519

    Google Scholar 

  42. Bendoraitiene J, Kavaliauskaite R, Klimaviciute R, Zemaitaitis A (2006) Peculiarities of starch cationization with glycidyltrimethylammonium chloride. Strach 58:623–631

    CAS  Google Scholar 

  43. Yan LF, Tao HY, Bangal PR (2009) Synthesis and flocculation behavior of cationic cellulose prepared in NaOH/urea aqueous solution. Clean-Soil Air Water 37:39–44

    Article  CAS  Google Scholar 

  44. Zhu YJ, Chen F (2014) Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem Rev 114:6462–6555

    Article  CAS  Google Scholar 

  45. Ma MG, Zhu JF, Zhu YJ, Sun RC (2014) The microwave-assisted ionic-liquid method: a promising methodology in nanomaterials. Chem Asian J 9:2378–2391

    Article  CAS  Google Scholar 

  46. Biswas A, Kim S, Selling GW, Cheng HN (2013) Microwave-assisted synthesis of alkyl cellulose in aqueous medium. Carbohydr Polym 94:120–123

    Article  CAS  Google Scholar 

  47. Lu P, Hsieh YL (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87:564–573

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundations of China (21276119, 51363013) and Scientific Research Foundation Project of Yunnan Municipal Education Commission (2012Y537).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Chen, K., Zhang, H. et al. Characterization of cationic parenchyma cellulose derivative by rapid preparation of low microwave power. Iran Polym J 24, 747–758 (2015). https://doi.org/10.1007/s13726-015-0363-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-015-0363-y

Keywords

Navigation