Skip to main content
Log in

Effective parameters in surface cross-linking of acrylic-based water absorbent polymer particles using bisphenol A diethylene glycidyl ether and cycloaliphatic diepoxide

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Surface cross-linking of acrylic-based water absorbent particles was conducted to enhance swollen gel strength. Partially neutralized acrylic acid was synthesized via solution polymerization, and then modification of superabsorbent polymer was imposed on the surface of its particles using bisphenol A diethylene glycidyl ether (BADGE) and 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate (CAE) resins. The two-step surface treatment was conducted initially, by homogenous soaking in treatment solution containing cross-linker and solvent (90 wt% acetone and 10 wt% deionized water) and then heating at 170 °C, to complete reaction, subsequently. ATR-FTIR spectroscopy, rheometry analysis, swelling capacity measurements in deionized water and saline solution (0.9 wt% NaCl) and swelling kinetics measurments were also employed for accurate investigation. Effect of both epoxy resins content as the effective parameter has been examined. Addition of a little amount of cross-linker raised the storage modulus about 30 % but the higher amounts of the reagents increased it up to 100 %. Both resins could significantly improve the absorbency under load. Heating duration was another effective parameter which has been investigated for BADGE resin. Two different trends have been observed for variant heating intervals. Network structure has been revealed by means of average M c calculating by the modified rubber elasticity theory. Besides, swelling kinetics of BADGE-treated sample was approximated by employing Voigt-based viscoelastic model and its parameters have been derived and compared with diethylene glycol diglycidyl ether-treated sample, as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Buchholz FL, Graham AT (1998) Modern superabsorbent polymer technology. Wiley Sons, New York

    Google Scholar 

  2. Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17:451–477

    CAS  Google Scholar 

  3. Zohuriaan-Mehr MJ, Omidian H, Doroudiani S, Kabiri K (2010) Advances in non-hygienic applications of superabsorbent hydrogel materials. J Mater Sci 45:5711–5735

    Article  CAS  Google Scholar 

  4. http://www.nonwovens-industry.com/issues/2013-11-01/view_far-east-report/a-look-at-the-top-superabsorbent-polymer-makers-in-the-world/. Accessed 18 July 2014

  5. Christenson EM, Anseth KS, Van den Beucken JJ, Chan CK, Ercan B, Jansen JA, Laurencin CT, Li WJ, Murugan R, Nair LS, Ramakrishna S, Tuan RS, Webster TJ, Mikos AG (2007) Nanobiomaterial applications in orthopedics. J Orthop Res 25:11–22

    Article  CAS  Google Scholar 

  6. Myung D, Waters D, Wiscman M, Duhamel PE, Noolandi J, Ta CN, Frank CW (2008) Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol 19:647–657

    Article  CAS  Google Scholar 

  7. Peak CW, Nagar S, Watts RD, Schmidt G (2014) Robust and degradable hydrogels from poly (ethylene glycol) and semi-interpenetrating collagen. Macromolecules 47:6408–6417

    Article  CAS  Google Scholar 

  8. Kheirabadi M, Bagheri R, Kabiri K (2015) Structure, swelling and mechanical behavior of a cationic full-IPN hydrogel reinforced with modified nanoclay. Iran Polym J 24:379–388

    Article  CAS  Google Scholar 

  9. Li MC, Ge X, Cho UR (2013) Mechanical performance, water absorption behavior and biodegradability of poly (methyl methacrylate)-modified starch/SBR biocomposites. Macromol Res 21:793–800

    Article  CAS  Google Scholar 

  10. Zhu H, Yao X (2013) Synthesis and characterization of poly (acrylamide-co-2-acrylamido-2-methylpropane sulfonic acid)/kaolin superabsorbent composite. J Macromol Sci Pure 50:175–184

    Article  CAS  Google Scholar 

  11. Rodrigues FHA, Spagnol C, Pereira AGB, Martins AF, Fajardo AR, Rubira AF, Muniz EC (2014) Superabsorbent hydrogel composites with a focus on hydrogels containing nanofibers or nanowhiskers of cellulose and chitin. J Appl Polym Sci. doi:10.1002/APP.39725

    Google Scholar 

  12. Nogi K, Ishizaki K, Konishi K (2012) Polyacrylic acid (salt)-type water absorbent resin and method for producing of same. US Patent 0157650

  13. Daniel T, Exner KM, Massonne K, Riegel U, Weismantel M (2007) Method for cross-linking hydrogels with morpholine-2,3-diones. US Patent 7183360

  14. Flohr A (2010) Superabsorbent polymers having radiation activatable surface cross-linkers and method of making them. US Patent 7700663

  15. Cipriano BH, Banik SJ, Sharma R, Rumore D, Hwang W, Briber RM, Raghavan SR (2014) Superabsorbent hydrogels that are robust and highly stretchable. Macromolecules 47:4445–4452

    Article  CAS  Google Scholar 

  16. Ramazani-Harandi MJ, Zohuriaan-Mehr MJ, Yousefi AA, Ershad-Langroudi A, Kabiri K (2009) Effects of structural variables on AUL and rheological behavior of SAP gels. J Appl Polym Sci 113:3676–3686

    Article  CAS  Google Scholar 

  17. Jockusch S, Turro NJ, Mitsukami Y, Matsumoto M, Iwamura T, Lindner T, Flohr A, di Massimo G (2009) Photoinduced surface cross-linking of superabsorbent polymer particles. J Appl Polym Sci 111:2163–2170

    Article  CAS  Google Scholar 

  18. Thote AJ, Chappell JT Jr, Gupta RB, Kumar R (2005) Reduction in the initial-burst release by surface crosslink-king of PLGA microparticles containing hydrophilic or hydrophobic drugs. Drug Dev Ind Pharm 31:43–57

    Article  CAS  Google Scholar 

  19. Huang X, Chestang BL, Brazel CS (2002) Minimization of initial burst in poly (vinyl alcohol) hydrogels by surface extraction and surface-preferential cross-linking. Int J Pharm 248:183–192

    Article  CAS  Google Scholar 

  20. Ma S, Liu M, Chen Z (2004) Preparation and properties of a salt-resistant superabsorbent polymer. J Appl Polym Sci 93:2532–2541

    Article  CAS  Google Scholar 

  21. Huang J, Huang ZM, Bao YZ, Weng ZX (2006) Synthesis and characterization of reinforced acrylic-based superabsorbents cross-linked with divinylbenzene. J Appl Polym Sci 100:1594–1600

    Article  CAS  Google Scholar 

  22. Mudiyanselage TK, Neckers DC (2008) Highly absorbing superabsorbent polymer. J Appl Polym Sci 46:1357–1364

    Article  CAS  Google Scholar 

  23. Wicks ZW, Jones FN, Pappas SP (1999) Organic coating science and technology, 2nd edn. Wiley, New York 11

    Google Scholar 

  24. Wu S, Soucek MD (2000) Cross-linking of acrylic latex coatings with cycloaliphatic diepoxide. Polymer 41:2017–2028

    Article  CAS  Google Scholar 

  25. Shechter L, Wynstra J (1956) Glycidyl ether reactions with alcohols, phenols, carboxylic acids, and acid anhydrides. Ind Eng Chem 48:86–93

    Article  CAS  Google Scholar 

  26. Wu S, Jorgensen JD, Soucek MD (2000) Synthesis of model acrylic latexes for cross-linking with cycloaliphatic diepoxides. Polymer 41:81–92

    Article  CAS  Google Scholar 

  27. Teng G, Soucek MD (2001) Synthesis and characterization of cycloaliphatic diepoxide cross-linkable core-shell latexes. Polymer 42:2849–2862

    Article  CAS  Google Scholar 

  28. Kabiri K, Hesarian S, Jamshidi A, Zohuriaan-Mehr MJ, Boohendi H, Poorheravi MR, Hashemi SA, Ahmad-Khanbeigi F (2011) Minimization of residual monomer content of superabsorbent hydrogels via alteration of initiating system. J Appl Polym Sci 120:2716–2723

    Article  CAS  Google Scholar 

  29. Merfeld G, Molaison C, Koeniger R, Acar AE, Mordhorst S, Suriano J, Irwin P, Warner RS, Gray K, Smith M, Kovaleski K, Garrett G, Finley S, Meredith D, Spicer M, Naguy T (2005) Acid/epoxy reaction catalyst screening for low temperature (120 C) powder coatings. Prog Org Coat 52:98–109

    Article  CAS  Google Scholar 

  30. Nikolic G, Zlatkovic S, Cakic M, Cakic S, Lacnjevac C, Rajic Z (2010) Fast fourier transform IR characterization of epoxy GY systems cross-linked with aliphatic and cycloaliphatic EH polyamine adducts. Sensors 10:684–696

    Article  CAS  Google Scholar 

  31. Dong J, Ozaki Y, Nakashima K (1997) Infrared, Raman, and near-infrared spectroscopic evidence for the coexistence of various hydrogen-bond forms in poly(acrylic acid). Macromolecules 30:1111–1117

    Article  CAS  Google Scholar 

  32. Goswami TH, Nandan B, Alam S, Mathur GN (2003) A selective reaction of polyhydroxy fullerene with cycloaliphatic epoxy resin in designing ether connected epoxy star utilizing fullerene as a molecular core. Polymer 44:3209–3214

    Article  CAS  Google Scholar 

  33. Pavia DL, Lampman GM, Kriz JS (1979) Introduction to spectroscopy: a guide for students of organic chemistry. WB Saunders Co., Philadelphia

    Google Scholar 

  34. Nielsen LE, Landel RF (1994) Mechanical properties of polymers and composites, vol 2. Marcel Dekker Inc, New York

    Google Scholar 

  35. Gundogan N, Melekaslan D, Okay O (2002) Rubber elasticity of poly (N-isopropylacrylamide) gels at various charge densities. Macromolecules 35:5616–5622

    Article  CAS  Google Scholar 

  36. Es-haghi H, Bouhendi H, Bagheri-Marandi GH, Zohurian-Mehr MJ, Kabiri K (2012) Rheological properties of microgel prepared with long-chain crosslinkers by a precipitation polymerization method. J Macromol Sci Phys 51:880–896

    Article  CAS  Google Scholar 

  37. Yazici I, Okay O (2005) Spatial inhomogeneity in poly (acrylic acid) hydrogels. Polymer 46:2595–2602

    Article  CAS  Google Scholar 

  38. Chen J, Shen J (2000) Swelling behaviors of polyacrylate superabsorbent in the mixtures of water and hydrophilic solvents. J Appl Polym Sci 75:1331–1338

    Article  CAS  Google Scholar 

  39. Amsden B (1998) Solute diffusion within hydrogels. Mechanisms and models. Macromolecules 31:8382–8395

    Article  CAS  Google Scholar 

  40. Okay O, Duramz S (2002) Charge density dependence of elastic modulus of strong polyelectrolyte hydrogels. Polymer 43:1215–1221

    Article  CAS  Google Scholar 

  41. Zeldovich KB, Khokhlov AR (1999) Osmotically active and passive counterions in inhomogeneous polymer gels. Macromolecules 32:3488–3494

    Article  CAS  Google Scholar 

  42. Dobrynin AV, Colby RH, Rubinstein M (1995) Scaling theory of polyelectrolyte solutions. Macromolecules 28:1859–1871

    Article  CAS  Google Scholar 

  43. Omidian H, Hashemi SA, Sammes PG, Meldrum I (1998) A model for the swelling of superabsorbent polymers. Polymer 39:6697–6704

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kourosh Kabiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moini, N., Kabiri, K. Effective parameters in surface cross-linking of acrylic-based water absorbent polymer particles using bisphenol A diethylene glycidyl ether and cycloaliphatic diepoxide. Iran Polym J 24, 977–987 (2015). https://doi.org/10.1007/s13726-015-0386-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-015-0386-4

Keywords

Navigation