Skip to main content
Log in

Novel crosslinking method for preparation of acrylic thickener microgels through inverse emulsion polymerization

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Novel crosslinking method was introduced for preparation of acrylic thickener microgels based on sodium acrylate and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) through inverse emulsion polymerization (IEP). Usually multifunctional vinyl crosslinkers such as methylene bisacrylamide are used in preparation of microgels through IEP. In this paper, a novel crosslinking method was introduced for microgel preparation through IEP. Diglycidyl materials were used instead of vinyl crosslinkers for microgel preparation. The effect of two diglycidyl materials such as polyethylene glycol diglycidyl ether (PEGDGE) and ehylene glycol diglycidyl ether (EGDGE) was investigated as crosslinker in microgel synthesis. Acrylic microgels prepared through IEP can be used as a thickener for many industrial applications. The effects of parameters such as comonomer composition, drying temperature and crosslinker content on the thickening properties of microgels were investigated. According to the viscosity measurements, the microgel containing 12.5 % AMPS possessed the highest viscosity, while the lower viscosities were found to be observed for the microgels having the lower and higher percentages of AMPS. Moreover, the microgel containing AMPS showed the thickening properties over a wide range of pH and was nearly pH independent. Increasing drying temperature and amount of crosslinker led to enhance the crosslink density. The apparent viscosity was reduced and the storage modulus was increased in higher crosslink density. These microgels showed superior thickening properties in comparison to vinyl-crosslinked microgels, i.e., the thickening efficiency of PEGDGE-crosslinked microgels was significantly higher (about 500 %) than the conventional MBA-crosslinked microgels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Capek I (2005) On the hybride inverse-emulsion polymerization of acrylamide. Polym Plast Technol Eng 44:539–555

    Article  CAS  Google Scholar 

  2. Ouyang L, Wang L, Schork FJ (2011) Synthesis and nucleation mechanism of inverse emulsion polymerization of acrylamide by RAFT polymerization: a comparative study. Polymer 52:63–67

    Article  CAS  Google Scholar 

  3. Gelman RA, Harrington JC, Abe Vaynberg K (2008) Insight into the inversion mechanism of an inverse polymer emulsion. Langmuir 24:12727–12729

    Article  CAS  Google Scholar 

  4. Bromberg L, Temchenko M, Hatton TA (2003) Smart microgel studies. Polyelectrolyte and drug-absorbing properties of microgels from polyether-modified poly(acrylic acid). Langmuir 19:8675–8684

    Article  CAS  Google Scholar 

  5. Raemdonck K, Demeester J, De Smedt S (2009) Advanced nanogel engineering for drug delivery. Soft Matter 5:707–715

    Article  CAS  Google Scholar 

  6. Kaneda I, Sogabe A, Nakajima H (2004) Water-swellable polyelectrolyte microgels polymerized in an inverse microemulsion using a nonionic surfactant. J Colloid Interface Sci 275:450–457

    Article  CAS  Google Scholar 

  7. Islam MT, Rodriguez-Hornedo N, Ciotti S, Ackermann C (2004) Rheological characterization of topical carbomer gels neutralized to different pH. Pharm Res 21:1192–1199

    Article  CAS  Google Scholar 

  8. Kabanov AV, Vinogradov SV (2009) Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed 48:5418–5429

    Article  CAS  Google Scholar 

  9. Hernandez-Barajas J, Hunkeler DJ (1997) Inverse-emulsion polymerization of acrylamide using block copolymeric surfactants: mechanism, kinetics and modeling. Polymer 38:437–447

    Article  CAS  Google Scholar 

  10. Willert M, Landfester K (2002) Amphiphilic copolymers from miniemulsified systems. Macromol Chem Phys 203:825–836

    Article  CAS  Google Scholar 

  11. Candau F, Leong YS, Fitch RM (1985) Kinetic study of the polymerization of acrylamide in inverse microemulsion. J Polym Sci A Polym Chem 23:193–214

    Article  CAS  Google Scholar 

  12. Kawaguchi H (2000) Functional polymer microspheres. Prog Polym Sci 25:1171–1210

    Article  CAS  Google Scholar 

  13. Yao ZL, Grishkewich N, Tam KC (2013) Swelling and shear viscosity of stimuli-responsive colloidal systems. Soft Matter 9:5319–5335

    Article  CAS  Google Scholar 

  14. Saunders BR, Laajam N, Daly E, Teow S, Hu X, Stepto R (2009) Microgels: from responsive polymer colloids to biomaterials. Adv Colloid Interface Sci 147–148:251–262

    Article  Google Scholar 

  15. Klinger D, Landfester K (2012) Stimuli-responsive microgels for the loading and release of functional compounds: fundamental concepts and applications. Polymer 53:5209–5231

    Article  CAS  Google Scholar 

  16. Sanson N, Rieger J (2010) Synthesis of nanogels/microgels by conventional and controlled radical crosslinking copolymerization. J Polym Chem 1:965–977

    Article  CAS  Google Scholar 

  17. Echeverria C, Lopez D, Mijangos C (2009) UCST responsive microgels of poly(acrylamide-acrylic acid) copolymers: structure and viscoelastic properties. Macromolecules 42:9118–9123

    Article  CAS  Google Scholar 

  18. Hennink WE, van Nostrum CF (2012) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 64:223–236

    Article  Google Scholar 

  19. Nayak S, Lyon LA (2005) Soft nanotechnology with soft nanoparticles. Angew Chem Int Ed 44:7686–7708

    Article  CAS  Google Scholar 

  20. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360

    Article  CAS  Google Scholar 

  21. Puig LJ, Sanchez-Diaz JC, Villacampa M, Mendizabal E, Puig JE, Aguiar A, Katime I (2001) Microstructured polyacrylamide hydrogels prepared via inverse microemulsion polymerization. J Colloid Interface Sci 235:278–282

    Article  CAS  Google Scholar 

  22. Sahiner N, Godbey WT, McPherson GL, John VT (2006) Microgel, nanogel and hydrogel-hydrogel semi-IPN composites for biomedical applications: synthesis and characterization. Colloid Polym Sci 284:1121–1129

    Article  CAS  Google Scholar 

  23. McAllister K, Sazani P, Adam M, Cho MJ, Rubinstien M, Samulski RJ, DeSimone JM (2002) Polymeric nanogels produced via inverse microemulsion polymerization as potential gene and antisense delivery agents. J Am Chem Soc 124:15198–15207

    Article  CAS  Google Scholar 

  24. Kriwet B, Walter E, Kissel T (1998) Synthesis of bioadhesive poly(acrylic acid) nano- and microparticles using an inverse emulsion polymerization method for the entrapment of hydrophilic drug candidates. J Control Release 56:149–158

    Article  CAS  Google Scholar 

  25. Marek SR, Conn CA, Peppas NA (2010) Cationic nanogels based on diethylaminoethyl methacrylate. Polymer 51:1237–1243

    Article  CAS  Google Scholar 

  26. Ho BS, Tan BH, Tan JPK, Tam KC (2008) Inverse microemulsion polymerization of sterically stabilized polyampholyte microgels. Langmuir 24:7698–7703

    Article  CAS  Google Scholar 

  27. Sung HW, Hsu CS, Lee YS, Lin DS (1996) Crosslinking characteristics of an epoxy-fixed porcine tendon: effects of pH, temperature and fixative concentration. J Biomed Mater Res 31:511–518

    Article  CAS  Google Scholar 

  28. Ramazani-Harandi MJ, Zohuriaan-Mehr MJ, Yousefi AA, Ershad-Langroudi A, Kabiri K (2006) Rheological determination of the swollen gel strength of superabsorbent polymer hydrogels. Polym Test 25:470–474

    Article  CAS  Google Scholar 

  29. Es-haghi H, Bouhendi H, Bagheri-Marandi G, Zohurian-Mehr MJ, Kabiri K (2010) Cross-linked poly(acrylic acid) microgels from precipitation polymerization. Polym Plast Technol Eng 49:1257–1264

    Article  CAS  Google Scholar 

  30. Chamberlain EK, Rao MA (1999) Rheological properties of acid converted waxy maize starches in water and 90 % DMSO/10 % water. Carbohydr Polym 40:251–260

    Article  CAS  Google Scholar 

  31. Hajighasem A, Kabiri K (2013) Cationic highly alcohol-swellable gels: synthesis and characterization. J Polym Res 20:1–9

    Article  CAS  Google Scholar 

  32. Najafi V, Kabiri K, Ziaee F, Omidian H, Zohuriaan-Mehr MJ, Bouhendi H, Farhadnejad H (2012) Synthesis and characterization of alcogels based on ethylene glycol methyl ether methacrylate-vinyl phosphonic acid copolymers. J Polym Res 19:9866–9869

    Article  Google Scholar 

  33. Kabiri K, Lashani S, Zohuriaan-Mehr MJ, Kheirabadi M (2011) Super alcohol-absorbent gels of sulfonic acid-contained poly(acrylic acid). J Polym Res 18:449–458

    Article  CAS  Google Scholar 

  34. Pascault JP, Williams RJJ (2010) Epoxy polymers: new materials and innovations. Wiley-VCH, Weinheim

    Book  Google Scholar 

  35. Es-haghi H, Bouhendi H, Bagheri Marandi G, Zohurian-Mehr MJ, Kabiri K (2013) An investigation into novel multifunctional cross-linkers effect on microgel prepared by precipitation polymerization. React Funct Polym 73:524–530

    Article  CAS  Google Scholar 

  36. Kabiri K, Mirzadeh H, Zohuriaan-Mehr MJ (2008) Undesirable effects of heating on hydrogels. J Appl Polym Sci 110:3420–3430

    Article  CAS  Google Scholar 

  37. Tong Z, Liu X (1994) Swelling equilibria and volume phase transition in hydrogels with strongly dissociating electrolytes. Macromolecules 27:844–848

    Article  CAS  Google Scholar 

  38. Atta AM (2002) Swelling behaviors of polyelectrolyte hydrogels containing sulfonate groups. Polym Adv Technol 13:567–576

    Article  CAS  Google Scholar 

  39. Li A, Wang A, Chen J (2004) Studies on poly(acrylic acid)/attapulgite superabsorbent composite. I. Synthesis and characterization. J Appl Polym Sci 92:1596–1603

    Article  CAS  Google Scholar 

  40. Rosa F, Bordado J, Casquilho M (2002) Kinetics of water absorbency in AA/AMPS copolymers: applications of a diffusion-relaxation model. Polymer 43:63–70

    Article  CAS  Google Scholar 

  41. Liu Y, Xie JJ, Zhang XY (2003) Synthesis and properties of the copolymer of acrylamide with 2-acrylamido-2-methylpropanesulfonic acid. J Appl Polym Sci 90:3481–3487

    Article  CAS  Google Scholar 

  42. Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84:76–82

    Article  CAS  Google Scholar 

  43. Kabiri K, Azizi A, Zohuriaan-Mehr MJ, Bagheri Marandi G, Bouhendi H (2011) Poly(acrylic acid-sodium styrene sulfonate) organogels: preparation, characterization and alcohol superabsorbency. J Appl Polym Sci 119:2759–2769

    Article  CAS  Google Scholar 

  44. Ramazani-Harandi MJ, Zohuriaan-Mehr MJ, Yousefi AA, Ershad-Langroudi A, Kabiri K (2009) Effects of structural variables on AUL and rheological behavior of SAP gels. J Appl Polym Sci 113:3676–3686

    Article  CAS  Google Scholar 

  45. Jiang H, Su W, Mather PT, Bunning TJ (1999) Rheology of highly swollen chitosan/polyacrylate hydrogels. Polymer 40:4593–4602

    Article  CAS  Google Scholar 

  46. Scott RA, Peppas NA (1999) Compositional effects on network structure of highly cross-linked copolymers of PEG-containing multiacrylates with acrylic acid. Macromolecules 32:6139–6148

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kourosh Kabiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajighasem, A., Kabiri, K. Novel crosslinking method for preparation of acrylic thickener microgels through inverse emulsion polymerization. Iran Polym J 24, 1049–1056 (2015). https://doi.org/10.1007/s13726-015-0392-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-015-0392-6

Keywords

Navigation