Skip to main content

Advertisement

Log in

Hybrid nanocomposite coating by sol–gel method: a review

  • Review
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The development of environmentally friendly process for pretreatments of metallic substrates is a field of growing research due to the ban against chromates used as protective pretreatments. Among the possible candidates for environmentally friendly pretreatments of aluminum alloys are the silica-based sol–gel coatings. Such coatings are able to form an Si–O–Al conversion layer providing a stable alumina/sol–gel film interface, which inhibits the onset of corrosion. Sol–gel technology offers a wide range of chemical mechanisms and exhibits high potential substitutes for the environmentally unfriendly chromate metal-surface pretreatment. Sol–gel derived organo-silicate hybrid coatings, preloaded with organic corrosion inhibitors, have been developed to provide active corrosion protection when integrity of the coating is compromised. The incorporation of organic corrosion inhibitors into hybrid coatings has been achieved as a result of physical entrapment of the inhibitor within the coating material at the stage of film formation and cross-linking. Sol–gel derived coatings, especially the hybrid films, provide a dense barrier against electrolyte uptake, and offer a wide range of applications as corrosion protective, hydrophilic coatings, hydrophobic anti-reflective coatings, migration barriers against liquid and volatile compounds, antibacterial modification of textiles and water-repellent antistatic textiles. In this paper, the novel applications of the sol–gel derived coatings are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hofacker S, Mechtel M, Mager M, Kraus H (2002) Sol–gel: a new tool for coatings chemistry. Prog Org Coat 45:159–164

    Article  CAS  Google Scholar 

  2. Wang D, Bierwagen GP (2009) Sol–gel coatings on metals for corrosion protection. Prog Org Coat 64:327–338

    Article  CAS  Google Scholar 

  3. Wang HM, Akid R, Metcalf JEP (2004) Sol–gel Al2O3-based thick two step coatings on metals for the replacement of Cr. In: Proceedings of ICEPAM, Oslo, Norway, 16 June 1816

  4. Chou TP, Chandrasekaran C, Limmer S, Nguyen C, Cao GZ (2002) Organic-inorganic sol–gel coating for corrosion protection of stainless steel. J Mater Sci Lett 21:251–255

    Article  CAS  Google Scholar 

  5. Arkles B, Steinmetz JR, Zazyczny J, Metha P (1992) Factors contributing to the stability of alkoxysilanes in aqueous solution. Silanes and other coupling agents. In: Mittal KL (ed) VSP Utrecht, Netherlands, pp 91–104

  6. Khramov AN, Voevodin NN, Balbyshev VN, Mantz RA (2005) Sol–gel-derived corrosion-protective coatings with controllable release of incorporated organic corrosion inhibitors. Thin Solid Films 483:191–196

    Article  CAS  Google Scholar 

  7. Vreugdenhil AJ, Balbyshev VN, Donley MS (2001) Nanostructured silicon sol–gel surface treatments for Al 2024–T3 protection. J Coat Technol 73:35–43

    Article  CAS  Google Scholar 

  8. Donley MS, Mantz RA, Khramov AN, Balbyshev VN, Kasten LS, Gaspar DJ (2003) The self-assembled nanophase particle (SNAP) process: ananoscience approach to coatings. Prog Org Coat 47:401–415

    Article  CAS  Google Scholar 

  9. Matejka L, Dusek K, Plestil J, Kriz J, Lendnicky F (1998) Formation and structure of the epoxy-silica hybrids. J Polym 41:171–181

    Google Scholar 

  10. Matejka L, Dukh O, Kolarik J (2000) Reinforcement of crosslinked rubbery epoxies by in situ formed silica. Polymer 41:1449–1459

    Article  CAS  Google Scholar 

  11. Liu YL, Wu CS, Chiu YS, Ho WH (2003) Preparation, thermal properties, and flame retardance of epoxy–silica hybrid resins. J Polym Sci 41:2354–2367

    Article  CAS  Google Scholar 

  12. Cardiano P, Mineo P, Sergi S, Ponterio RC, Triscari M, Piraino P (2003) Epoxy–silica polymers as restoration materials. Polymer 43:6635–6640

    Article  Google Scholar 

  13. Ershad Langroudi A, Mai C, Vigier G, Vassoile R (1997) Hydrophobic hybrid inorganic-organic thin film prepared by sol–gel process for glass protection and strengthening applications. J Appl Polym Sci 65:2387–2393

    Article  CAS  Google Scholar 

  14. Zhou S, Wu L, You B, Gu G (2009) Smart coatings II. In: ACS Symposium of Series, 1002 Chapter 10:193–219

  15. Catauro M, Bollino F, Papale F (2014) Biocompatibility improvement of titanium implants by coating with hybrid materials synthesized by sol–gel technique. J Biomed Mater Res A 102:4473–4479

    CAS  Google Scholar 

  16. Sforca ML, Yoshida IVP, Nunes SP (1999) Organic–inorganic membranes prepared from polyether diamine and epoxy silane. J Membr Sci 159:197–207

    Article  CAS  Google Scholar 

  17. Wright JD, Sommerdijk NAJ (2001) Sol–gel materials chemistry and applications. CRC Press, OPA Overseas Publishers Association, New York

    Google Scholar 

  18. Guglielmi M (1997) Sol–gel coatings on metals. J Sol Gel Sci Technol 8:443–449

    CAS  Google Scholar 

  19. Wen J, Wilkes GL (1996) Organic/inorganic hybrid network materials by the sol–gel approach. Chem Mater 8:1667–1681

    Article  CAS  Google Scholar 

  20. Rahimi A (2004) Inorganic and organometallic polymers:areview. Iran Polym J13:149–164

    Google Scholar 

  21. Aegerter MA, Mennig M (2004) Sol-gel technologies for glass producers and users. Kluwer Academic Publishers, Massachussetts

    Book  Google Scholar 

  22. Rabinovich EM, Klein LC (1988) Sol–gel technology for thin films, fibers, preforms, electronics and specialty shapes. Noyes Publications, New Jersey, USA

    Google Scholar 

  23. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Harcourt Brace Jovanovich (Academic Press), Boston

    Google Scholar 

  24. Kessler VG, Spijksma GI, Seisenbaeva GA, Hakansson S, Blank DHA, Bouwmeester HJM (2006) New insight in the role of modifying ligands in the sol–gel processing of metal alkoxide precursors: a possibility to approach new classes of materials. J Sol Gel Sci Technol 40:163–179

    Article  CAS  Google Scholar 

  25. Livage J, Henry M, Sanchez C (1988) Sol–gel chemistry of transition metal oxides. Prog Solid State Chem 18:259–341

    Article  CAS  Google Scholar 

  26. Chatry M, Henry M, In M, Sanchez C, Livage J (1994) The role of complexing ligands in the formation of non-aggregated nanoparticles in zirconia. J Sol Gel Sci Technol 1:233–240

    Article  CAS  Google Scholar 

  27. Kreiter R, Rietkerk MDA, Bonekamp BC, Veen HM, Kessler VG, Vente JF (2008) Sol–gel routes for microporeuse zirconium and titania membranes. J Sol Gel Sci Technol 48:203–211

    Article  CAS  Google Scholar 

  28. Baran V (1971) Hydroxyl ion as a ligand. Coordin Chem Rev 6:65–93

    Article  CAS  Google Scholar 

  29. Choi H, Hwang S (2000) Sol-gel-derived magnesium oxide precursor for thin-film fabrication. Mater Res Soc 15:842–845

    Article  CAS  Google Scholar 

  30. Ozer N (1997) Electrochemical properties of sol-gel deposited vanadium pentoxide films. Thin Solid Films 305:80–87

    Article  Google Scholar 

  31. Yang M, Zhou C, Jiang D (2008) Comparison of different strategies to realize highly reflective thin film coatings at 1064 nm. Infra Phys Technol 51:572–575

    Article  Google Scholar 

  32. Kessler VG, Seisenbaeva GA, Unell M, Hakansonn S (2008) Chemically triggered biodelivery using metal-organic sol–gel synthesis. Angew Chem Int Ed 47:8506–8509

    Article  CAS  Google Scholar 

  33. Eisenbarth E, Velten D, Muller M, Thull R, Breme J (2006) Nanostructured niobium oxide coatings influence osteoblast adhesion. J Biomed Mater Res Part A 79:166–175

    Article  CAS  Google Scholar 

  34. Romero Pareja R, Lopez Ibanez R, Martín F, Ramos-Barrado JR, Leinen D (2006) Corrosion behaviour of zirconia barrier coatings on galvanized steel. Surf Coat Technol 200:6606–6610

    Article  CAS  Google Scholar 

  35. Li H, Liang K, Mei L, Gu S, Wang S (2001) Oxidation protection of mild steel by zirconia sol–gel coatings. Mater Lett 51:320–324

    Article  CAS  Google Scholar 

  36. Zheludkevich ML, Miranda Salvado IM, Ferreira MGS (2005) Sol–gel coatings for corrosion protection of metals. J Mater Chem 15:5099–5111

    Article  CAS  Google Scholar 

  37. Carneiro J, Tedim J, Fernandes SCM, Freire CSR, Gandini A, Ferreira MGS, Zheludkevich ML (2013) Chitosan as a smart coating for controlled release of corrosion inhibitor 2-mercaptobenzothiazole. ECS Electrochem Lett 2:C19–C22

    Article  CAS  Google Scholar 

  38. Nazeri A, Qadri SB (1996) Alumina-stabilized zirconia coatings for high-temperature protection of turbine blades. Surf Coat Technol 86:166–169

    Article  Google Scholar 

  39. Sittner F, Ensinger W (2007) Ion permeability of amorphous hydrogen- and fluorine-containing carbon films formed by plasma enhanced chemical vapour deposition. Nuclear Instrum Methods Phys Res Section B 257:737–740

    Article  CAS  Google Scholar 

  40. Bobzin K, Lugscheider E, Maes M, Immich P (2008) Developing PVD zirconium-oxide coatings for use of thixoforming of steel. Int J Microstruct Mater Proper 3:262–270

    CAS  Google Scholar 

  41. Amadeh A, Pahlevani B, Heshmati-Manesh S (2002) Effects of rare earth metal addition on surface morphology and corrosion resistance of hot-dipped zinc coatings. Corros Sci 44:2321–2331

    Article  CAS  Google Scholar 

  42. Shyu SG, Smith TJ, Baskaran S, Buchanan RC (1998) Buchanan in better ceramics through chemistry III. In: Brinker CJ, Clark DE, Ulrich DR (eds) Mater Res Soc 121, pp 717–773

  43. Nguyen PT (2003) Korrosionsschutz von Eisenwerkstoffen durch intrinsisch leitfähige Polymere. Germany Doctoral Thesis, Tech Univ Dresden, Germany

  44. Sittner F, Ensinger W (2007) Electrochemical investigation and characterization of thin-film porosity. Thin Solid Films 515:4559–4564

    Article  CAS  Google Scholar 

  45. Ugas-Carrión R, Sittner F, Ochs CJ, Flege S, Ensinger W (2009) Characterization of the porosity of thin zirconium oxide coatings prepared at low temperatures. Thin Solid Films 517:1967–1969

    Article  CAS  Google Scholar 

  46. Abdolah Zadeh M, Vander ZS, Garcia SJ (2013) Routes to extrinsic and intrinsic self-healing corrosion protective sol–gel coatings: a review. Self-Heal Mater 1:1–18

    Article  Google Scholar 

  47. Kirk PB, Filiaggi MJ, Sodhi RNS, Pilliar RM (1999) Evaluating sol–gel ceramic thin films for metal implant applications: III. In vitro aging of sol–gel-derived zirconia films on Ti-6Al–4V. J Biomed Mater Res 48:424–433

    Article  CAS  Google Scholar 

  48. Ochs CJ, Sittner F, Ugas-Carrión R, Yekehtaz M, Flege S, Ensinger W (2008) Structural and electrochemical characterization of zirconium and silicon based sol–gel coatings for corrosion protection. Curr Topics Electrochem 13:59–65

    CAS  Google Scholar 

  49. Kickelbick G (2007) Hybrid materials. Synthesis, characterization, and applications. Wiley, Weinheim

    Google Scholar 

  50. Voevodin NN, Grebasch NT, Soto WS, Arnold FE, Donley MS (2001) Potentiodynamic evaluation of sol–gel coatings with inorganic inhibitors. Surf Coat Technol 140:24–28

    Article  CAS  Google Scholar 

  51. He J, Schoenug JM (2002) Nanostructured coatings: review. Mater Sci Eng A336:274–319

    Article  CAS  Google Scholar 

  52. Ershad-Langroudi A, Rahimi A (2003) DGEBA TEOS ormosil coatings for metal surfaces. In: Proceedings of 6th Iranian Semi Polymer Science and Technology (ISPST 2003) Tehran, Iran, 331, 12–15 May

  53. Bamoulid L, Maurette MT, Caro DD, Guenbour A, Ben Bachir A, Arie L, El HS, Benoit-Marquie F, Ansart F (2008) An efficient protection of stainless steel against corrosion: combination of a conversion layer and titanium dioxide deposit. Surf Coat Technol 202:5020–5026

    Article  CAS  Google Scholar 

  54. Zhong XK, Chen Q, Li B, Wang JP, Hu JY, Hu W (2009) Effect of sintering temperature on corrosion properties of sol-gel based Al2O3 coatings on pre-treated AZ91D magnesium alloy. Corros Sci 51:2950–2958

    Article  CAS  Google Scholar 

  55. Xiong J, Das SN, Shin B, Kar JP, Choi JH, Myoung JM (2010) Biomimetic hierarchical ZnO structure with superhydrophobic and antireflective properties. J Colloid Interf Sci 350:344–347

    Article  CAS  Google Scholar 

  56. Gal-Or L, Silberman I, Chaim R (1991) Electrolytic ZrO2 coatings. J Electrochem Soc 138:1939–1942

    Article  CAS  Google Scholar 

  57. Chaim R, Stark G, Gal-Or L (1994) Electrochemical Al2O3 coatings on TiB2 and TiC substrates. J Mater Sci Lett 13:487–490

    Article  CAS  Google Scholar 

  58. Shan CX, Hou X, Choy KL (2008) Improvement in corrosion resistance of CrN coated stainless steel by conformal TiO2 deposition. Surf Coat Technol 202:2399–2402

    Article  CAS  Google Scholar 

  59. Yun H, Li J, Chen HB, Lin CJ (2007) A study on the N-, S- and Cl-modified nano-TiO2 coatings for corrosion protection of stainless steel. Electrochim Acta 52:6679–6685

    Article  CAS  Google Scholar 

  60. Shen GX, Chen YC, Lin CJ (2005) Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol–gel method. Thin Solid Films 489:130–136

    Article  CAS  Google Scholar 

  61. Hajjaji SE, Alaoui ME, Simon P (2005) Preparation and characterization of electrolytic alumina deposit on austenitic stainless steel. Sci Technol Adv Mater 6:519–524

    Article  CAS  Google Scholar 

  62. Callardo J, Galliano P, Duran A (2001) Bioactive and protective sol-gel coatings on metals for orthopaedic prostheses. J Sol Gel Sci Technol 21:65–74

    Article  Google Scholar 

  63. Duran A, Conde A, Gomez Coedo A, Dorado T, Garcıac C, Cere S (2004) Sol–gel coatings for protection and bioactivation of metals used in orthopaedic devices. J Mater Chem 14:2282–2290

    Article  CAS  Google Scholar 

  64. Aries L, Alberich L, Roy J, Sotoul J (1996) Conversion coating on stainless steel as a support for electrochemically induced alumina deposit. Electrochim Acta 41:2799–2803

    Article  CAS  Google Scholar 

  65. Hajjaji SE, Ben Bachir A, Aries L (2001) Electrolytic deposits on stainless steel as high temperature coatings. Surf Eng 17:201–204

    Article  Google Scholar 

  66. Aries L, Roy J, Senocq F, El Hajjaji S (2000) Effect of stabilising heat treatment on characteristics of electrolytic alumina coating on ferritic stainless steel. Mater Corros 51:496–501

    Article  CAS  Google Scholar 

  67. Bamoulid L, Benoît-Marquié F, Aries L, Guenbour A, Ben Bachir A, Maurette MT, Ansart F, Hajjaji SE (2006) Synthèse et optimisation de photocatalyseurs supportés (TiO2/acier inoxydable fonctionnalisé). Surf Coat Technol 201:2791–2796

    Article  CAS  Google Scholar 

  68. Rita BF, Isabel RF, Carlos JRS, Elsa VP (2016) Hybrid sol–gel coatings: smart and green materials for corrosion mitigation. Coatings 6:1–19

    Google Scholar 

  69. Brinker CJ, Hurd AJ, Shunrk PR (1992) Review of sol–gel thin film formation. J Non Cryst Solids 147:424–436

    Article  Google Scholar 

  70. Buskens P, Wouters M, Rentrop C, Vroon ZA (2013) Brief review of environmentally benign antifouling and foul-release coatings for marine applications. J Coat Technol Res 10:29–36

    Article  CAS  Google Scholar 

  71. Wilkes GL, Orler B, Huang H (1985) Chemical modification of matrix resin networks with engineering thermoplastics. I. Phenolic hydroxyl terminated poly(aryl ether sulfone)-epoxy systems. Polym Bull 3:201–208

    Google Scholar 

  72. Kobayashi Y, Ishizaka T, Kurokawa Y (2005) Preparation of alumina films by the sol–gel method. J Mater Sci 40:263–283

    Article  CAS  Google Scholar 

  73. Mackenzie J, Chung YJ, Hu Y (1992) Rubbery ormosils and their applications. J Non-Cryst Solids 147:271–279

    Article  Google Scholar 

  74. Nakata S, Kawata M, Kakimoto MA, Imaj Y (1993) Synthesis and properties of segmented aromatic poly(ether sulfone)-amide and poly(ether sulfone)-imide copolymers. J Polym Sci Part A: Polym Chem 30:2217–2221

    Google Scholar 

  75. Zandi-Zand R, Ershad-Langroudi A, Rahimi A (2005) Silica based organic–inorganic hybrid nanocomposite coatings for corrosion protection. Prog Org Coat 53:286–291

    Article  CAS  Google Scholar 

  76. Zandi-Zand R, Ershad-Langroudi A, Rahimi A (2004) Optimization of corrosion resistance of hybrid thin films on 1050 aluminum alloy by taguchi method. In: Proceedings of the International Union of Pure and Applied Chemistry World Polymer Congress, Macro2004, Paris, France, 4–9 July 2004

  77. Cornelius CJ (2000) Chapter 3, PhD. Dissertation, Faculty of Virginia, Polytechnic Institute and State University

  78. Schmidt H, Menning M (2000) Sol-gel gateway short course on coating. INM, Insitut Für Neue Materialien, Saarbrücken

    Google Scholar 

  79. Kasemann R, Schmid HK (1993) Coating for mechanical and chemical protection based on organic/norganic sol–gel nanocomposites. In: 1st European workshop on hybrid organic–inorganic materials, chaˆteau de Bierville, France, 8–10 Nov

  80. Zandi-Zand R, Ershad-Langroudi A, Rahimi A (2005) Organic–inorganic hybrid coatings for corrosion protection of 1050 aluminum alloy. J Non-Crystal Solid 351:1307–1311

    Article  CAS  Google Scholar 

  81. Farhadyar N, Rahimi A, Ershad Langroudi A (2004) Synthesis and study of inorganic–organic hybrid produced from tetraethoxysilane and epoxy-aromatic amine. In: Proceedings of the International Union of Pure and Applied Chemistry World Polymer Congress, Paris, France, 4–9 July 2004

  82. Zandi-Zand R, Ershad-Langroudi A, Rahimi A (2005) Improvement of corrosion resistance of organic–inorganic hybrid coating based on epoxy–silica via aromatic diol curing agent. Iran J Polym Sci Technol 6:350–367

    Google Scholar 

  83. Guido K (2007) Hybrid materials: synthesis, characterization, and applications. Wiley, New york

    Google Scholar 

  84. Sanchez C, Julián B, Belleville P, Popall MJ (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15:3559–3592

    Article  CAS  Google Scholar 

  85. Parkhill RL, Knobbe ET, Donley MS (2001) Application and evaluation of environmentally compliant spray-coated ormosil films as corrosion resistant treatments for aluminum 2024-T3. Prog Org Coat 41:261–265

    Article  CAS  Google Scholar 

  86. Zheludkevich ML, Yasakau KA, Poznyak SK, Ferreira MGS (2005) Triazole and thiazole derivatives as corrosion inhibitors for AA2024 aluminium alloy. Corros Sci 47:3368–3383

    Article  CAS  Google Scholar 

  87. Zandi-Zand R, Ershad-Langroudi A, Rahimi A (2005) Synthesis and characterization of nanocomposite hybrid coatings based on 3-glycidoxypropyl-trimethoxysilane and bisphenol A. Iran Polym J 14:371–377

    Google Scholar 

  88. Ochi M, Takahashi R (2001) Phase structure and thermomechanical properties of primary and tertiary amine-cured epoxy/silica hybrids. J Polym Sci 39:1071–1084

    Article  CAS  Google Scholar 

  89. Zandi Zand R (2005) Investigation of corrosion, abrasion and weathering resistance in hybrid nanocomposite coatings based on epoxy-silica. Thesis, Azad University, Tehran, North Branch

  90. Chiang CL, Chen-Chi MM, Wu DL, Kuan HC (2003) Preparation, characterization, and properties of novolac type phenolic/SiO2 hybrid organic-inorganic nanocomposite materials by sol-gel method. J Polym Sci 41:905–913

    Article  CAS  Google Scholar 

  91. Balgude D, Sabnis A (2012) Sol-gel derived hybrid coatings as an environment friendly surface treatment for corrosion protection of metals and their alloys. J Sol Gel Sci Technol 64:124–134

    Article  CAS  Google Scholar 

  92. Chen C, Khobaib M, Curliss D (2003) Epoxy layered-silicate nanocomposites. Prog Org Coat 47:376–383

    Article  CAS  Google Scholar 

  93. Hajji P, David L, Gerard JF, Pascault JP, Vigier G (1999) Synthesis, structure, and morphology of polymer-silica hybrid nanocomposites based on hydroxyethyl methacrylate. J Polym Sci 37:3172–3187

    Article  CAS  Google Scholar 

  94. Chiang CL, Chen-Chi MM (2002) Synthesis, characterization and thermal properties of novel epoxy containing silicon and phosphorus nanocomposites by sol-gel method. Eur Polym J 38:2219–2224

    Article  CAS  Google Scholar 

  95. Phan TT, Bentiss F, Jama C (2015) Structural and anticorrosion performance characterization of phosphosilicate sol-gel coatings prepared from 3-(trimethoxysilyl) propyl methacrylate and bis[2-(methacryloyloxy)ethyl] phosphate. Prog Org Coat 89:123–131

    Article  CAS  Google Scholar 

  96. Santana I, Pepe A, Jimenez-Pique E, Pellice S, Milosev I, Cere S (2015) Corrosion protection of carbon steel by silica-based hybrid coatings containing cerium salts: effect of silica nanoparticle content. Surf Coat Technol 265:106–116

    Article  CAS  Google Scholar 

  97. Cai S, Zhang Y, Zhang H, Yan H, Lv H, Jiang B (2014) Sol-gel preparation of hydrophobic silica antireflective coatings with low refractive index by base/acid two-step catalysis. ACS Appl Mater Interf 6:11470–11475

    Article  CAS  Google Scholar 

  98. Bessede JL (1990) PhD dissertation, INSA, Lyon, 3233 France, p 112

  99. Jonsson M, Thierry D, LeBozec N (2006) Atmospheric corrosion of scanning Kelvin probe. Corros Sci 48:1193–1208

    Article  CAS  Google Scholar 

  100. Szunerits S, Walt DR (2002) Aluminum surface corrosion and the mechanism of inhibitors using pH and metal ion selective imaging fiber bundles. Anal Chem 74:886–894

    Article  CAS  Google Scholar 

  101. Tanem BS, Svenningsen G (2005) Relations between sample preparation and SKPFM Volta potential maps on an EN AW-6005 aluminium alloy. J Mardalen Corros Sci 47:1506–1519

    Article  CAS  Google Scholar 

  102. Metroke TL, Kachurina O, Knobbe ET (2002) Spectroscopic and corrosion resistance characterization of amine and super acid-cured hybrid organic-inorganic thin films on 2024-T3 aluminium alloy. Prog OrgCoat 44:185–199

    Article  CAS  Google Scholar 

  103. Fayna M, Eric LB, Laurence R, Clement S (2005) Mechanical properties of hybrid organic–inorganic materials. J Mater Chem 15:3787–3794

    Article  CAS  Google Scholar 

  104. Davo B, Conde A, Damborenea JJ (2004) Inhibition of stress corrosion cracking of alloy AA8090 T-8171 by addition of rare earth salts. Corros Sci 47:1227–1237

    Article  CAS  Google Scholar 

  105. Metroke TL, Kachurina O, Knobbe ET (2002) Spectroscopic and corrosion resistance characterization of GLYMO–TEOS ormosil coatings for aluminium alloy corrosion inhibition. Prog Org Coat 44:295–305

    Article  CAS  Google Scholar 

  106. Rahimi A, Gharazi S, Ershad-Langroudi A, Ghasemi D (2006) Synthesis and characterization of hydrophilic nanocomposite coating on glass substrate. J Appl Polym Sci 102:5322–5329

    Article  CAS  Google Scholar 

  107. Yuranova T, Mosteo R, Bandara J, Laub D, Kiwi J (2006) Self-cleaning cotton textiles surfaces modified by photoactive SiO2/TiO2 coating. J Molecul Catal A: Chem 244:160–167

    Article  CAS  Google Scholar 

  108. Akamatsu Y, Aegerter MA, Almedia R, Soutar A, Tadanaga K, Yang H, Watanabe T (2008) Coatings made by sol–gel and chemical nanotechnology. J Sol Gel Sci Technol 47:203–236

    Article  CAS  Google Scholar 

  109. Águas H, Popovici N, Pereira L, Conde O, Branford WR, Cohen LF, Fortunato E, Martins R (2008) Spectroscopic ellipsometry study of Co-doped TiO2films. Phys Status Solid 205:880–883

    Article  CAS  Google Scholar 

  110. Kasanen J, Suvanto M, Pakkanen TT (2009) Self-cleaning, titanium dioxide based, multilayer coating fabricated on polymer and glass surfaces. J Appl Polym Sci 111:2597–2606

    Article  CAS  Google Scholar 

  111. Liu KS, Tian Y, Jiang L (2013) Bio-inspired superoleophobic and smart materials: design, fabrication, and application. Prog Mater Sci 58:503–564

    Article  CAS  Google Scholar 

  112. Darmanin T, Givenchy T, Amigoni S, Guittard F (2013) Superhydrophobic surfaces by electrochemical processes. Adv Mater 25:1378–1394

    Article  CAS  Google Scholar 

  113. Drelich J, Chibowski E, Meng DD, Terpilowski K (2011) Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 7:9804–9828

    Article  CAS  Google Scholar 

  114. Zhang X, Shi F, Niu J, Jiang YG, Wang ZQ (2008) Superhydrophobic surfaces: from structural control to functional application. J Mater Chem 18:621–633

    Article  CAS  Google Scholar 

  115. Koc Y, de Mello AJ, McHale G, Newton MI, Roach P, Shirtcliffe NJ (2008) Nano-scale superhydrophobicity: suppression of protein adsorption and promotion of flow-induced detachment. Lab Chip 8:582–586

    Article  CAS  Google Scholar 

  116. Liu MJ, Wang ST, Wei ZX, Song YL, Jiang L (2009) Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv Mater 21:665–669

    Article  CAS  Google Scholar 

  117. Guo ZG, Liu WM, Su BL (2011) Superhydrophobic surfaces: from natural to biomimetic to functional. J Colloid Interface Sci 353:335–355

    Article  CAS  Google Scholar 

  118. Xu MJ, Lu N, Xu HB, Qi DP, Wang YD, Shi SL, Chi LF (2011) A facile approach to superhydrophobic coating from direct polymerization of “super glue”. Soft Matter 7:4050–4054

    Article  CAS  Google Scholar 

  119. Yang J, Zhang Z, Men XH, Xu XH, Zhu XT (2011) A simple approach to fabricate superoleophobic coatings. N J Chem 35:576–580

    Article  CAS  Google Scholar 

  120. Yang J, Zhang ZZ, Xu XH, Men XH, Zhu XT, Zhou XY (2011) Superoleophobic textured aluminum surfaces. N J Chem 35:2422–2426

    Article  CAS  Google Scholar 

  121. Huo S, Chen LH, Zhu Q, Fang JH (2013) Surface-enhanced infrared absorption spectroscopy study of anticorrosion behavior of 2-mercaptobenzothiazole on copper. Acta Phys Chim Sin 29:2565–2572

    CAS  Google Scholar 

  122. Sun J, Wang J (2015) Fabrication of superhydrophobic surfaces on FRP composites: from rose petal effect to lotus effect. J Coat Technol Res 12:1023–1030

    Article  CAS  Google Scholar 

  123. Jia Y, Zhang Y, Liu G, Zhuang G, Fan Q, Shao J (2015) Variable structural colors and hydrophobicity of SiO2/polyethyleneimine coating on glass substrate. J Coat Technol Res 12:1031–1039

    Article  CAS  Google Scholar 

  124. Jung JI, Park OH, Bae BS (2003) Fabrication of channel waveguides by photochemical self-developing in doped sol-gel hybrid glass. J Sol Gel Sci Technol 26:897–901

    Article  CAS  Google Scholar 

  125. Farhadyar N, Rahimi A, Ershad Langroudi A (2005) Preparation and characterization of aromatic amine cured epoxy-silica hybrid inorganic-organic coating via in situ sol-gel. Iran Polym J 14:155–162

    CAS  Google Scholar 

  126. Kron J, Aamberg-Schowab S, Schotner G (1994) Functional coatings on glass using ORMOCER. J Sol Gel Sci Technol 2:189–192

    Article  CAS  Google Scholar 

  127. Nimittrakoolchai O, Supothina S (2008) Polymer-based superhydrophobic coating fabricated from polyelectrolyte multilayers of poly(allylamine hydrochloride) and poly(acrylic acid). Macromol Symp 264:73–79

    Article  CAS  Google Scholar 

  128. Gharazi S, Ershad-Langroudi A, Rahimi A (2011) The influence of silica synthesis on the morphology of hydrophilic nanocomposite coating. Scientia Iranica 18:785–789

    CAS  Google Scholar 

  129. Mingdong Y, Faqian L, Fanglin D (2016) Synthesis and properties of a green and self-cleaning hard protective coating. Prog Org Coat 94:34–40

    Article  CAS  Google Scholar 

  130. Rahimi A, Ershad-Langroudi A, Gharazi S (2005) In: Proceedings of the 4th International seminar on polymer science and technology, Tehran, Iran

  131. Tiwari A, Hihara LH (2015) Sol-gel route for the development of smart green conversion coatings for corrosion protection of metal alloys. In intelligent coatings for corrosion control. Butterworth-Heinemann, Boston, MA, pp 363–407

    Google Scholar 

  132. Brusatin G, Innocenzi P, Guglielmi M, Babonneau F (2004) Poled sol–gel materials with heterocycle push–pull chromophores that confer enhanced second-order optical nonlinearity. Adv Funct Mater 14:1160–1166

    Article  CAS  Google Scholar 

  133. Conde A, Durán A, Damborenea JJ (2003) Polymeric sol–gel coatings as protective layers of aluminum alloys. Prog Org Coat 46:288–296

    Article  CAS  Google Scholar 

  134. Arenas MA, Bethencourt M, Botana FJ, Damborenea J, Marcos M (2001) Inhibition of 5083 aluminium alloy and galvanised steel by lanthanide salts. Corros Sci 43:157–170

    Article  CAS  Google Scholar 

  135. Briard R, Heitz C, Barthel E (2005) Crack bridging mechanism for glass strengthening by organosilane water-based coatings. J Non-Cryst Solids 351:323–330

    Article  CAS  Google Scholar 

  136. Sanchez C, Soler-Illia GJ, Ribot F, Grosso D (2003) Design of functional nano-structured materials through the use of controlled hybrid organic–inorganic interfaces. C R Chim 6:1131–1151

    Article  CAS  Google Scholar 

  137. Khramov AN, Voevodin NN, Balbyshev VN, Donley MS (2004) Hybrid organo-ceramic corrosion protection coatings with encapsulated organic corrosion inhibitors. Thin Solid Films 447(448):549–557

    Article  CAS  Google Scholar 

  138. Shirtcliffe NJ, McHale G, Newton MI (2011) The superhydrophobicity of polymer surfaces: recent developments. J Polym Sci Part B: Polym Phys 49:1203–1217

    Article  CAS  Google Scholar 

  139. Gallardo J, Duran A, Garcia I, Celis JP, Arenas MA, Conde A (2003) Effect of sintering temperature on the corrosion and wear behavior of protective SiO2-based sol-gel coatings. J Sol Gel Sci Technol 27:175–180

    Article  CAS  Google Scholar 

  140. Baloji Naik R, Ratna D (2015) Synthesis of silver nanoparticles embedded novel hyperbranched urethane alkyd-based nanocomposite for high solid antimicrobial coating. J Coat Technol Res 12:1073–1083

    Article  CAS  Google Scholar 

  141. Iler RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  142. Gonzalez-Irun RJ, Carreira P, Garcia-Diez A, Hui RD (2007) Nanofiller effect on the glass transition of a polyurethane. J Therm Carlorim 87:45–47

    Article  CAS  Google Scholar 

  143. Metroke TL, Parkhill RL, Knobbe ET (2001) Passivation of metal alloys using sol–gel-derived materials: a review. Prog Org Coat 41:233–238

    Article  CAS  Google Scholar 

  144. Yang Z, Wicks DA, Hoyle CE, Pu H, Yuan J, Wan D, Liu Y (2009) Newly UV-curable polyurethane coatings prepared by multifunctional thiol- and ene-terminated polyurethane aqueous dispersions mixtures: preparation and characterization. Polymer 50:1717–1722

    Article  CAS  Google Scholar 

  145. Atkinson A, Segal DL (1998) Some recent developments in aqueous sol–gel processing. J Sol Gel Sci Technol 13:133–139

    Article  CAS  Google Scholar 

  146. Guo ZG, Fang J, Hao JC, Liang YM, Liu WM (2006) A novel approach to stable superhydrophobic surfaces. Chem Phys Chem 7:1674–1677

    CAS  Google Scholar 

  147. Thim GP, Oliveira MAS, Oliveira EDA, Melo FCL (2000) Sol–gel silica film preparation from aqueous solutions for corrosion protection. J Non-Cryst Solid 273:124–128

    Article  CAS  Google Scholar 

  148. Mills A, Morris S, Davies R (1993) Photo mineralization of 4-chlorophenol sensitized by titanium dioxide-A study of the effect of annealing the photo catalyst at different temperatures. J Photochem Photobiol A Chem 71:285–289

    Article  CAS  Google Scholar 

  149. Speck T, Mulhaupt R, Speck O (2013) Self-healing in plants as bioinspiration for self-repairing polymers. In: Binder WH (ed) Self-healing polymers: from principles to applications. Wiley, Weinheim

    Google Scholar 

  150. Hager MD, Greil P, Leyens C, van der Zwaag S, Schubert U (2010) Self-healing materials. Adv Mater 22:5424–5430

    Article  CAS  Google Scholar 

  151. Garcia SJ, Fischer HR, van der Zwaag S (2011) Self-healing anticorrosive organic coating based on an encapsulated water reactive silyl ester: synthesis and proof of concept. Prog Org Coat 72:142–149

    Article  CAS  Google Scholar 

  152. Garcia SJ, Fischer HR Self-healing polymeric systems: concepts and applications, In: Julio San Roman (ed) Smart polymers and their applications, Woodhead, ISBN 0 85709 695 8, ISBN-13: 978 0 85709695 1

  153. Dohler D, Michael P, Binder W (2013) Principles of self-healing polymers. In: Binder WH (ed) Self-healing polymers: from principles to applications. Wile, Weinheim, Germany

    Google Scholar 

  154. Imato K, Nishihara M, Kanehara T, Amamoto Y, Takahara A, Otsuka H (2012) Self- healing of chemical gels cross-linked by diarylbibenzofuranone-based Trigger-free dynamic covalent bonds at room temperature. Angew Chem Int Ed 51:1138–1142

    Article  CAS  Google Scholar 

  155. Lafont U, van Zeijl H, van der Zwaag S (2012) Influence of cross-linkers on the cohesive and adhesive self-healing ability of polysulfide-based thermosets. ACS Appl Mater Interface 4:6280–6288

    Article  CAS  Google Scholar 

  156. Pepels M, Filot I, Klumperman B, Goossens H (2013) Self-healing systems based on disulfide–thiol exchange reactions. Polym Chem 4:4955–4965

    Article  CAS  Google Scholar 

  157. Qunna X, Fan Z, Jianzhong M, Tao C, Jianhua Z, Demetra S, Gaidău C (2015) Facile synthesis of casein-based silica hybrid nano-composite for coatings: effects of silane coupling agent. Prog Org Coat 88:1–7

    Article  CAS  Google Scholar 

  158. AbdolahZadeh M, van der Zwaag S, García SJ (2013) On the healing mechanism of sol–gel derived hybrid materials containing dynamic di-sulfide bonds. In: Proceedings of 4th international conference on self-healing mater, Ghent, Belgium

  159. García SJ, Varley RJ, van der Zwaag S (2011) A quantitative description of the surface healing of ionomers. In: Proceedings of 3rd international conference on self-healing Mater, Bath, UK

  160. Vega JJ, van der Zwaag S, García SJ (2013) The role of clusters on the healing efficiency of a modified Zn based ionomer. In: Proceedings of 4th international conference on self-healing mater, Ghent, Belgium

  161. Hohlbein N, von Tapavicza M, Nellesen A, Schmidt AM (2013) Self-healing ionomers in ‘‘Self-Healing Polymers’’. Wiley, New York

    Google Scholar 

  162. Bode S, Bose RK, Matthes S, Ehrhardt M, Seifert A, Schacher FH (2013) Self-healing metallopolymers based on cadmium bis(terpyridine) complex containing polymer networks. Polym Chem 4:4966–4973

    Article  CAS  Google Scholar 

  163. Pratama PA, Peterson AM, Palmese GR (2013) The role of maleimide structure in the healing of furan-functionalized epoxy–amine thermosets. Polym Chem 4:5000–5006

    Article  CAS  Google Scholar 

  164. Scheltjens G, Diaz MM, Brancart J, Van Assche G, Van Mele B (2013) A self-healing polymer network based on reversible covalent bonding. React Funct Polym 73:413–420

    Article  CAS  Google Scholar 

  165. Sheridan RJ, Bowman CN (2013) Understanding the process of healing of thermoreversible covalent adaptable networks. Polym Chem 4:4974–4979

    Article  CAS  Google Scholar 

  166. Kötteritzsch J, Stumpf S, Hoeppener S, Vitz J, Hager MD, Schubert US (2013) One-component intrinsic self-healing coatings based on reversible crosslinking by Diels–Alder cycloadditions. Macromol Chem Phys 214:1636–1649

    Article  CAS  Google Scholar 

  167. Hayes SA, Jones FR, Marshiya K, Zhang W (2007) A self-healing thermosetting composite material. Compos Part A: Appl Sci Manufact 38:1116–1120

    Article  CAS  Google Scholar 

  168. Hayes SA, Zhang W, Branthwaite M, Jones FR (2007) Self-healing of damage in fibre-reinforced polymermatrix composites. J R Soc Interface 4:381–387

    Article  CAS  Google Scholar 

  169. Bejan A, Lorente S, Wang KM (2006) Networks of channels for self-healing composite materials. J Appl Phys 100:033528

    Article  CAS  Google Scholar 

  170. White SR, Sottos NR, Geubelle PH, Moore JS, Siriram SR, Kessler MR, Brown EN (2005) Multifunctional autonomically healing composite material. US Patent 6 858 659, USA

  171. Yin T, Rong MZ, Zhang MQ, Yang GC (2007) Self-healing epoxy composites- preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent. Compos Sci Technol 67:201–212

    Article  CAS  Google Scholar 

  172. Balaskas AC, Kartsonakis IA, Tziveleka LA, Kordas GC (2012) Improvement of anti-corrosive properties of epoxy-coated AA 2024-T3 with TiO2 nanocontainers loaded with 8-hydroxyquinoline. Prog Org Coat 74:418–426

    Article  CAS  Google Scholar 

  173. Arunchandran C, Ramya S, George RP, Mudali UK (2012) Self-healing corrosion resistive coatings based on inhibitor loaded TiO2 nanocontainers. J Electrochem Soc 159:C552–C559

    Article  CAS  Google Scholar 

  174. Rogachev AA, Yarmolenko MA, Jiang X, Rogachev AV, Shen R, Zhou Y (2015) Heat treatment impact on molecular structure of polymer-based silver containing coatings deposited from the active gas phase. Prog Org Coat 81:80–86

    Article  CAS  Google Scholar 

  175. Maia F, Tedim J, Lisenkov AD, Salak AN, Zheludkevich ML, Ferreira MGS (2012) Silica nanocontainers for active corrosion protection. Nanoscale 4:1287–1298

    Article  CAS  Google Scholar 

  176. Brown EN, White SR, Sottos NR (2004) Microcapsule induced toughening in a self-healing polymer composite. J Mater Sci 39:1703–1710

    Article  CAS  Google Scholar 

  177. Rule JD, Sottos NR, White SR, Moore JS (2005) The chemistry of self-healing polymers. Educ Chem 42:130–132

    CAS  Google Scholar 

  178. Rule J, Brown EN, Sottos NR, White SR, Moore JS (2005) Wax-protected catalyst microspheres for efficient self-healing materials. Adv Mater 72:205–208

    Article  CAS  Google Scholar 

  179. Jones AS, Rule JD, Moore JS, White SR, Sottos NR (2006) Catalyst morphology and dissolution kinetics of self-healing polymers. Chem Mater 18:1312–1317

    Article  CAS  Google Scholar 

  180. Kessler MR, White SR (2001) Self-activated healing of delamination damage in woven composites. Compos Part A Appl Sci Manufact 32:683–699

    Article  Google Scholar 

  181. Voevodin NN, Kurdziel JW, Mantz R (2006) Corrosion protection for aerospace aluminum alloys by modified self-assembled nanophase particle (MSNAP) sol–gel. Surf Coat Technol 201:1080–1084

    Article  CAS  Google Scholar 

  182. Kartsonakis IA, Koumoulos EP, Balaskas AC, Pappas GS, Charitidis CA, Kordas GC (2012) Hybrid organic–inorganic multilayer coatings including nanocontainers for corrosion protection of metal alloys. Corros Sci 57:56–66

    Article  CAS  Google Scholar 

  183. Rodic P, Mertelj A, Borovsak M, Bencan A, Mihailovic D, Malic B, Milosev I (2016) Composition, structure and morphology of hybrid acrylate-based sol-gel coatings containing Si and Zr composed for protective applications. Surf Coat Technol 286:388–396

    Article  CAS  Google Scholar 

  184. Maia F, Yasakau KA, Carneiro J, Kallip S, Tedim J, Henriques T, Cabral A, Venâncio J, Zheludkevich ML, Ferreira MGS (2016) Corrosion protection of AA2024 by sol-gel coatings modified with MBT-loaded polyuria microcapsules. Chem Eng J 283:1108–1117

    Article  CAS  Google Scholar 

  185. Wilson GO, Moore JS, White SR, Sottos NR, Andersson HM (2008) Autonomic healing of epoxy vinyl esters via ring opening metathesis polymerization. Adv Funct Mater 18:44–52

    Article  CAS  Google Scholar 

  186. Rule JD, Sottos NR, White SR (2007) Effect of microcapsule size on the performance of self-healing polymers. Polymer 48:3520–3529

    Article  CAS  Google Scholar 

  187. Blaiszik BJ, Sottos NR, White SR (2008) Nanocapsules for self-healing materials. Compos Sci Technol 68:978–986

    Article  CAS  Google Scholar 

  188. Yang Y, Zhang H, Zhang J, Wang SH, Duan CJ, He YJ (2007) The experiment study of fracture mechanics on self-healing composite material containing microcapsules. Mater Rev 21:143–147

    Google Scholar 

  189. Lamaka SV, Zheludkevich ML, Yasakau KA, Montemor MF, Cecílio P, Ferreira MGS (2006) TiOx self-assembled networks prepared by templating approach as nanostructured reservoirs for self-healing anticorrosion pre-treatments. Electrochem Commun 8:421–428

    Article  CAS  Google Scholar 

  190. Keller MK, White SR, Sottos NR (2007) A self-healing poly(dimethyl siloxane) elastomer. Adv Funct Mater 17:2399–2404

    Article  CAS  Google Scholar 

  191. Caruso MM, Delafuente DA, Ho V, Moore JS, Sottos NR, White SR (2007) Solvent-promoted self-healing materials. Macromolecules 40:8830–8832

    Article  CAS  Google Scholar 

  192. Lee JY, Buxton GA, Balazs AC (2004) Using nanoparticles to create self-healing composites. J Chem Phys 121:5531–5540

    Article  CAS  Google Scholar 

  193. Ratna D, Karger-Kocsis J (2008) Recent advances in shape memory polymers and composites: a review. J Mater Sci 43:254–269

    Article  CAS  Google Scholar 

  194. Yuan YC, Yin T, Rong MZ, Zhang MQ (2008) Self healing in polymers and polymer composites. Concepts, realization and outlook: a review. Express Polym Lett 4:238–250

    Article  CAS  Google Scholar 

  195. Youngblood JP, Sottos NR, Extrand C (2008) Bioinspired materials for self-cleaning and self-healing. MRS Bull 33:732–741

    Article  CAS  Google Scholar 

  196. Williams KA, Dreyer DR, Bielawski CW (2008) The underlying chemistry of self-healing materials. MRS Bull 33:759–765

    Article  CAS  Google Scholar 

  197. White SR, Caruso MM, Moore JS (2008) Autonomic healing of polymers. MRS Bull 33:766–769

    Article  CAS  Google Scholar 

  198. Benita S (2006) Microencapsulation: methods and industrial applications. CRC/Taylor & Francis, Boca Raton, FL

    Google Scholar 

  199. Ghosh S (2006) Functional coatings: by polymer microencapsulation. Wiley, Weinheim

    Book  Google Scholar 

  200. Zhang L, Yujiang Z, Dongkyu C, Peng W (2013) A self-cleaning underwater superoleophobic mesh for oil-water separation. Sci Rep 3:2326–2331

    Google Scholar 

  201. Tittelboom KV, Belie ND (2013) Self-healing in cementitious materials—a review. Materials 6:2182–2217

    Article  CAS  Google Scholar 

  202. Blaiszik BJ, Caruso MM, McIlroy DA, Moore JS, White SR, Sottos NR (2009) Microcapsules filled with reactive solutions for self-healing materials. Polymer 50:990–997

    Article  CAS  Google Scholar 

  203. Kopeca K, Szczepanowicza G, Mordarskia K, Podgornaa RP, Sochaa P, Nowaka P, Warszynskia T (2015) Self-healing epoxy coatings loaded with inhibitor-containing polyelectrolyte nanocapsules. Prog Org Coat 84:97–106

    Article  CAS  Google Scholar 

  204. Yuan L, Liang GZ, Xie JQ, Li L, Guo J (2006) Preparation and characterization of poly(urea formaldehyde) microcapsules filled with epoxy resins. Polymer 47:5338–5349

    Article  CAS  Google Scholar 

  205. Snihirova D, Liphardt L, Grundmeier G, Montemor F (2013) Electrochemical study of the corrosion inhibition ability of smart coatings applied on AA2024. J Solid State Electrochem 17:2183–2192

    Article  CAS  Google Scholar 

  206. Yuan YC, Rong MZ, Zhang MQ, Chen B, Yang GC, Li XM (2008) Self-healing polymeric materials using epoxy/mercaptan as the healant. Macromolecules 41:5197–5202

    Article  CAS  Google Scholar 

  207. Yuan YC, Rong MZ, Zhang MQ (2008) Preparation and characterization of microencapsulated polythiol. Polymer 49:2531–2541

    Article  CAS  Google Scholar 

  208. Yuan YC, Rong MZ, Zhang MQ (2008) Preparation and characterization of poly(melamine formaldehyde) walled microcapsules containing epoxy. Acta Polym Sin 5:472–480

    Article  Google Scholar 

  209. Liu X, Sheng X, Lee JK, Kessler MR (2009) Synthesis and characterization of melamine-ureaformaldehyde microcapsules containing ENB-based self-healing agents. Macromol Mater Eng 294:389–395

    Article  CAS  Google Scholar 

  210. Grigoriev D, Akcakayiran D, Schenderlein M, Shchukin D (2014) Protective organic coatings with anticorrosive and other feedback-active features: micro- and nanocontainers-based approach. Corrosion 70:446–463

    Article  CAS  Google Scholar 

  211. Xiao DS, Yuan YC, Rong MZ, Zhang MQ (2009) Hollow polymeric microcapsules: preparation, characterization and application in holding boron trifluoride diethyl etherate. Polymer 50:560–568

    Article  CAS  Google Scholar 

  212. Zheludkevich ML, Tedim J, Ferreira MGS (2012) Smart coatings for active corrosion protection based on multi-functional micro and nanocontainers. Electrochim Acta 82:314–323

    Article  CAS  Google Scholar 

  213. Yeom CK, Oh SB, Rhim JW, Lee JM (2000) Microencapsulation of water-soluble herbicide by interfacial reaction. I. Characterization of microencapsulation. J Appl Polym Sci 78:1645–1655

    Article  CAS  Google Scholar 

  214. Mookhoek SD, Blaiszik BJ, Fischer HR, Sottos NR, White SR, van der Zwaag S (2008) Peripherally decorated binary microcapsules containing two liquids. J Mater Chem 18:5390–5394

    Article  CAS  Google Scholar 

  215. Voorn DJ, Ming W, van Herk AM (2006) Polymer-clay nanocomposite latex particles by inverse pickering emulsion polymerization stabilized with hydrophobic montmorillonite platelets. Macromolecules 39:2137–2143

    Article  CAS  Google Scholar 

  216. Abate AR, Weitz DA (2009) High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidics. Small 5:2030–2032

    Article  CAS  Google Scholar 

  217. Borisova D, Akcakayiran D, Schenderlein M, Mohwald H, Shchukin DG (2013) Nanocontainer-based anticorrosive coatings: effect of the container size on the self-healing performance. Adv Funct Mater 23:3799–3812

    Article  CAS  Google Scholar 

  218. Fu J, Chen T, Wang M, Yang N, Li S, Wang Y, Liu X (2013) Acid and alkalinedual stimuli-responsive mechanized hollow mesoporous silica nanoparticles as smart nanocontainers for intelligent anticorrosion coatings. ACS Nano 7:11397–11408

    Article  CAS  Google Scholar 

  219. Brown EN, White SR, Sottos NR (2005) Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite. 1. Manual infiltration. Compos Sci Technol 65:2466–2473

    Article  CAS  Google Scholar 

  220. Snihirova D, Lamaka SV, Cardoso MM, Condeco JAD, Ferreira HECS, Montemor MF (2014) pH-sensitive polymeric particles with increased inhibitor-loading capacity as smart additives for corrosion protective coatings for AA2024. Electrochim Acta 145:123–131

    Article  CAS  Google Scholar 

  221. Latnikova A, Grigoriev D, Schenderlein M, Mohwald H, Shchukin D (2012) A new approach towards active self-healing coatings: exploitation of microgels. Soft Matter 8:10837–10844

    Article  CAS  Google Scholar 

  222. Plawecka M, Snihirova D, Martins B, Szczepanowicz K, Warszynski P, Montemor MF (2014) Self healing ability of inhibitor-containing nanocapsules loaded in epoxy coatings applied on aluminium 5083 and galvanneal substrates. Electrochim Acta 140:282–293

    Article  CAS  Google Scholar 

  223. Kirkby EL, Rule JD, Michaud VL, Sottos NR, White SR, Manson JAE (2008) Embedded shape-memory alloy wires for improved performance of self-healing polymers. Adv Funct Mater 18:2253–2260

    Article  CAS  Google Scholar 

  224. Brown EN, White SR, Sottos NR (2005) Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite. II. In situ self-healing. Compos Sci Technol 65:2474–2480

    Article  CAS  Google Scholar 

  225. Kirkby EL, Michaud VJ, Manson JAE, Sottos NR, White SR (2009) Performance of self-healing epoxy with microencapsulated healing agent and shape memory alloy wires. Polymer 50:5533–5538

    Article  CAS  Google Scholar 

  226. Moll JL, White SR, Sottos NR (2010) A self-sealing fiber reinforced composite. J Compos Mater 44:2573–2585

    Article  CAS  Google Scholar 

  227. Liu XF (2007) Filiform corrosion attack on pretreated aluminum alloy with tailored surface of epoxy coating. Corros Sci 49:3494–3513

    Article  CAS  Google Scholar 

  228. Patel AJ, Sottos NR, Wetzel ED, White SR (2010) Autonomic healing of low-velocity impact damage in fiber-reinforced composites. Composites A 41:360–368

    Article  CAS  Google Scholar 

  229. Williams G, McMurray HN (2012) Inhibition of filiform corrosion on organic-coated AA2024-T3 by smart-release cation and anion-exchange pigments. Electrochim Acta 69:287–294

    Article  CAS  Google Scholar 

  230. Sanada K, Yasuda I, Shindo Y (2006) Transverse tensile strength of unidirectional fiber-reinforced polymers and self-healing of interfacial debonding. Plast Rubber Compos 35:67–72

    Article  CAS  Google Scholar 

  231. Williams G (2010) Critical factors in the inhibition of filiform corrosion by in-coating ion-exchange pigments. ECS Trans 24:67–76

    Article  Google Scholar 

  232. Chipara MD, Chipara M, Shansky E, Zaleski JM (2009) Self-healing of high elasticity block copolymers. Polym Adv Technol 20:427–431

    Article  CAS  Google Scholar 

  233. Maiti S, Geubelle PH (2006) Cohesive modeling of fatigue crack retardation in polymers: crack closure effect. Eng Fract Mech 73:22–41

    Article  Google Scholar 

  234. Maiti S, Shankar C, Geubelle PH, Kieffer J (2006) Continuum and molecular-level modeling of fatigue crack retardation in self-healing polymers. J Eng Mater Technol 128:595–602

    Article  CAS  Google Scholar 

  235. Wilson GO, Caruso MM, Reimer NT, White SR, Sottos NR, Moore JS (2008) Evaluation of ruthenium catalysts for ring-opening metathesis polymerization-based self-healing applications. Chem Mater 20:3288–3297

    Article  CAS  Google Scholar 

  236. Wilson GO, Porter KA, Weissman H, White SR, Sottos NR, Moore JS (2009) Stability of second generation Grubbs’ alkylidenes to primary amines: formation of novel ruthenium-amine complexes. Adv Synth Catal 351:1817–1825

    Article  CAS  Google Scholar 

  237. Liu X, Lee JK, Yoon SH, Kessler MR (2006) Characterization of diene monomers as healing agents for autonomic damage repair. J Appl Polym Sci 101:1266–1272

    Article  CAS  Google Scholar 

  238. Kamphaus JM, Rule JD, Moore JS, Sottos NR, White SR (2008) A new self-healing epoxy with tungsten (VI) chloride catalyst. J R Soc Interf 5:95–103

    Article  CAS  Google Scholar 

  239. Rong MZ, Zhang MQ, Zhang W (2007) A novel self-healing epoxy system with microencapsulated epoxy and imidazole curing agent. Adv Compos Lett 16:167–172

    Google Scholar 

  240. Yin T, Zhou L, Rong MZ, Zhang MQ (2008) Self-healing woven glass fabric/epoxy composites with the healant consisting of microencapsulated epoxy and latent curing agent. Smart Mater Struct 17:1–8

    Article  CAS  Google Scholar 

  241. Yin T, Rong MZ, Zhao JQ (2009) Durability of self-healing woven glass fabric/epoxy composites. Smart Mater Struct 18:4001–4011

    Google Scholar 

  242. Yin T, Rong MZ, Wu JS, Chen HB, Zhang MQ (2008) Healing of impact damage in woven glass fabric reinforced epoxy composites. Compos A 39:1479–1487

    Article  CAS  Google Scholar 

  243. Nazarov A, Romano AP, Fedel M, Deflorian F, Thierry D, Olivier MG (2012) Filiform corrosion of electrocoated aluminium alloy: role of surface pretreatment. Corros Sci 65:187–198

    Article  CAS  Google Scholar 

  244. Keller MW, White SR, Sottos NR (2008) Torsion fatigue response of self-healing poly(dimethylsiloxane) elastomers. Polymer 49:3136–3145

    Article  CAS  Google Scholar 

  245. Cho SH, White SR, Braun PV (2009) Self-healing polymer coatings. Adv Mater 21:645–649

    Article  CAS  Google Scholar 

  246. Beiermann BA, Keller MW, Sottos NR (2009) Self-healing flexible laminates for resealing of puncture damage. Smart Mater Struct 18:5001–5011

    Article  CAS  Google Scholar 

  247. Xiao DS, Yuan YC, Rong MZ, Zhang MQ (2009) Self-healing epoxy based on cationic chain polymerization. Polymer 50:2967–2975

    Article  CAS  Google Scholar 

  248. Zhou X, Thompson GE, Scamans GM (2003) The influence of surface treatment onfiliform corrosion resistance of painted aluminium alloy sheet. Corros Sci 45:1767–1777

    Article  CAS  Google Scholar 

  249. Caruso MM, Blaiszik BJ, White SR, Sottos NR, Moore JS (2008) Full recovery of fracture toughness using a nontoxic solvent-based self-healing system. Adv Funct Mater 18:1898–1904

    Article  CAS  Google Scholar 

  250. Zako M, Takano N (1999) Intelligent material systems using epoxy particles to repair microcracks and delamination damage in GFRP. J Intell Mater Syst Struct 10:836–841

    Article  Google Scholar 

  251. Suryanarayana C, Rao KC, Kumar D (2008) Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings. Prog Org Coat 63:72–78

    Article  CAS  Google Scholar 

  252. Kumar A, Stephenson L, Murray J (2006) Self-healing coatings for steel. Prog Org Coat 55:244–253

    Article  CAS  Google Scholar 

  253. Sauvant-Moynot V, Gonzalez S, Kittel J (2008) Self-healing coatings: an alternative route for anticorrosion protection. Prog Org Coat 63:307–315

    Article  CAS  Google Scholar 

  254. Grigoriev DO, Kohler K, Skorb E, Shchukin DG, Mohwald H (2009) Polyelectrolyte complexes as a “smart” depot for self-healing anticorrosion coatings. Soft Matter 5:1426–1432

    Article  CAS  Google Scholar 

  255. Esther MV, Frederik R, Daming W, David SM, Mark ES, John VH, Julian RJ (2013) Bioactivity in silica/poly(γ-glutamic acid) sol–gel hybrids through calcium chelation. Acta Biomater 9:7662–7671

    Article  CAS  Google Scholar 

  256. Huang J, Kim J, Agrawal N, Sudarsan AP, Maxim JE (2009) Rapid fabrication of bio-inspired 3D microfluidic vascular networks. Adv Mater 21:3567–3571

    Article  CAS  Google Scholar 

  257. Chatterjee D, Dasgupta S (2005) Visible light induced photocatalytic degradation of organic pollutants. J Photochem Photobiol C: Rev 6:186–205

    Article  CAS  Google Scholar 

  258. Song XF, Gao L (2007) Fabrication of hollow hybrid microspheres coated with silica/titania via sol-gel process and enhanced photocatalytic activities. J Phys Chem C 23:8180–8187

    Article  CAS  Google Scholar 

  259. Lira-Cantu M, Gomez-Romero P (1998) Electrochemical and chemical syntheses of the hybrid organic-inorganic electroactive material formed by phosphomolybdate and polyaniline. Application as cation-insertion electrodes. Chem Mater 10:698–704

    Article  CAS  Google Scholar 

  260. Lim HS, Han JT, Kwak DH, Jin MH, Cho K (2006) Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern. J Am Chem Soc 128:14458–14459

    Article  CAS  Google Scholar 

  261. Amiri S, Rahimi A (2014) Preparation of supramolecular corrosion-inhibiting nanocontainers for self-protective hybrid nanocomposite coatings. J Polym Res 21:566–573

    Article  CAS  Google Scholar 

  262. Amiri S, Rahimi A (2015) Self-healing hybrid nanocomposite coatings with encapsulated organic corrosion inhibitors. J Polym Res 22:624–631

    Article  CAS  Google Scholar 

  263. Rahimi A, Amiri S (2015) Synthesis and characterization of supramolecular corrosion inhibitor nanocontainers for anticorrosion hybrid nanocomposite coatings. J Polym Res 22:66–74

    Article  CAS  Google Scholar 

  264. Rahimi A, Amiri S (2015) Anticorrosion hybrid nanocomposite coatings with encapsulated organic corrosion inhibitors. J Coat Technol Res 12:587–593

    Article  CAS  Google Scholar 

  265. Podbielska H, Ulatowska A (2005) Sol-gel technology for biomedical engineering. Bull Polish Acad Sci 53:261–267

    CAS  Google Scholar 

  266. Liu J, Miao X (2004) Sol–gel derived bioglass as a coating material for porous alumina scaffolds. Ceram Int 30:1781–1785

    Article  CAS  Google Scholar 

  267. Li N, Jie Q, Zhu S, Wang R (2004) A new route to prepare macroporous bioactive sol–gel glasses with high mechanical strength. Mater Lett 58:2747–2750

    Article  CAS  Google Scholar 

  268. Sato M, Slamovich EB, Webster TJ (2005) Enhanced osteoblast adhesion on hydrothermally treated hydroxyapatite/titania/poly(lactide-co-glycolide) sol–gel titanium coatings. Biomaterials 26:1349–1357

    Article  CAS  Google Scholar 

  269. Weng W, Zhang S, Cheng K, Qu H, Du P, Shen G, Yuan J, Han G (2003) Sol–gel preparation of bioactive apatite films. Surf Coat Technol 167:292–296

    Article  CAS  Google Scholar 

  270. Bedilu AA, Daniel OC, Dixon SJ, Kibret M, Rizkalla AS (2012) Bioactive and biodegradable nanocomposites and hybrid biomaterials for bone regeneration. J Funct Biomater 3:432–463

    Article  CAS  Google Scholar 

  271. Puppi D, Chiellini F, Piras AM, Chiellini E (2010) Polymeric materials for bone and cartilage repair. Prog Polym Sci 35:403–440

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azam Rahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, S., Rahimi, A. Hybrid nanocomposite coating by sol–gel method: a review. Iran Polym J 25, 559–577 (2016). https://doi.org/10.1007/s13726-016-0440-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-016-0440-x

Keywords

Navigation