Skip to main content
Log in

Microwave-assisted hydrothermal synthesis of cellulose/ZnO composites and its thermal transformation to ZnO/carbon composites

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Development of a simple and rapid method for the preparation of cellulose/ZnO composites is of great importance for broadening and improving their potential applications. In this work, the cellulose/ZnO composites were synthesized via the microwave-assisted hydrothermal method using cellulose, zinc nitrate hexahydrate, and ammonia in an aqueous solution. The influence of the cellulose on ZnO crystals was investigated in detail. Cell cytotoxicity of the as-obtained cellulose/ZnO composites was explored. All the cell viability values of the cellulose/ZnO composites were above 95%, indicating that cellulose/ZnO composites had essentially no cytotoxicity. ZnO/carbon (ZnO/C) composites were obtained by calcination at 600 °C in the N2 atmosphere using cellulose/ZnO composites as precursors. The flower-shaped ZnO crystals could still maintain their morphologies via the N2 atmosphere calcination. These ZnO/C composites exhibited good photocatalytic performances under both UV and visible light irradiation. Under the UV light irradiation, the degradation efficiency values of methylene blue and rhodamine B dyes were up to 99% and 97%, respectively. The kinetic linear model curves of the photocatalytic degradation of the two dyes could be assigned to the pseudo-first-order kinetics model. This work provided a potential strategy for the synthesis of metallic oxide/cellulose composites, which have broadened the applications of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Janotti A, Van de Walle CG (2009) Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys 72:126501

    Article  Google Scholar 

  2. Han Z, Liao L, Wu Y, Pan H, Shen S, Chen J (2012) Synthesis and photocatalytic application of oriented hierarchical ZnO flower-rod architectures. J Hazard Mater 217:100–106

    Article  Google Scholar 

  3. Baviskar P, Ennaoui A, Sankapal B (2014) Influence of processing parameters on chemically grown ZnO films with low cost Eosin-Y dye towards efficient dye sensitized solar cell. Sol Energ 105:445–454

    Article  CAS  Google Scholar 

  4. Giannouli M, Spiliopoulou F (2012) Effects of the morphology of nanostructured ZnO films on the efficiency of dye-sensitized solar cells. Renew Energ 41:115–122

    Article  CAS  Google Scholar 

  5. Hamedani NF, Mahjoub AR, Khodadadi AA, Mortazavi Y (2011) Microwave assisted fast synthesis of various ZnO morphologies for selective detection of CO, CH4 and ethanol. Sensor Actuat B 156:737–742

    Article  CAS  Google Scholar 

  6. Yao IC, Tseng TY, Lin P (2012) ZnO nanorods grown on polymer substrates as UV photodetectors. Sensor Actuat A 178:26–31

    Article  CAS  Google Scholar 

  7. Yoo S, Yoon JY, Ryu J, Kim YH, Ka JW, Yi MH, Jang KS (2014) Low-temperature-annealed alumina/polyimide gate insulators for solution-processed ZnO thin-film transistors. Appl Surf Sci 313:382–388

    Article  CAS  Google Scholar 

  8. Fan XM, Zhou ZW, Wang J, Tian K (2011) Morphology and optical properties of tetrapod-like zinc oxide whiskers synthesized via equilibrium gas expanding method. T Nonferr Metal Soc 21:2056–2060

    Article  CAS  Google Scholar 

  9. Suwanboon S, Amornpitoksuk P, Haidoux A, Tedenac JC (2008) Structural and optical properties of undoped and aluminium doped zinc oxide nanoparticles via precipitation method at low temperature. J Alloys Compd 462:335–339

    Article  CAS  Google Scholar 

  10. Cho S, Jung SH, Lee KH (2008) Morphology-controlled growth of ZnO nanostructures using microwave irradiation: from basic to complex structures. J Phys Chem C 112:12769–12776

    Article  CAS  Google Scholar 

  11. Yayapao O, Thongtem T, Phuruangrat A, Thongtem S (2013) Sonochemical synthesis of Dy-doped ZnO nanostructures and their photocatalytic properties. J Alloys Compd 576:72–79

    Article  CAS  Google Scholar 

  12. Lu HB, Wang SM, Zhao L, Li JC, Dong BH, Xu ZX (2011) Hierarchical ZnO microarchitectures assembled by ultrathin nanosheets: hydrothermal synthesis and enhanced photocatalytic activity. J Mater Chem 21:4228–4234

    Article  CAS  Google Scholar 

  13. Zeng J, Li R, Liu S, Zhang L (2011) Fiber-like TiO2 nanomaterials with different crystallinity phases fabricated via a green pathway. ACS Appl Mater Interfaces 3:2074–2079

    Article  CAS  Google Scholar 

  14. Fu LH, Liu YJ, Ma MG, Zhang XM, Xue ZM, Zhu JF (2016) Microwave-assisted hydrothermal synthesis of cellulose/hydroxyapatite nanocomposites. Polymer 8:316. doi:10.3390/polym8090316

    Article  Google Scholar 

  15. Olsson T, Azizi Samir A, Salazar-Alvarez G, Belova L, Strom V, Berglund A, Ikkala O, Nogues J, Gedde W (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584–588

    Article  CAS  Google Scholar 

  16. Moon RJ, MartiniA Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  17. Maleki A, Movahed H, Paydar R (2016) Design and development of a novel cellulose/γ-Fe2O3/Ag nanocomposite: a potential green catalyst and antibacterial agent. RSC Adv 6:13657–13665

    Article  CAS  Google Scholar 

  18. John A, Ko HU, Kim DG, Kim J (2011) Preparation of cellulose-ZnO hybrid films by a wet chemical method and their characterization. Cellulose 18:675–680

    Article  CAS  Google Scholar 

  19. Martins NCT, Freire CSR, Neto CP, Silvestre AJD, Causio J, Baldi G, Sadocco P, Trindade T (2013) Antibacterial paper based on composite coatings of nanofibrillated cellulose and ZnO. Colloids Surf A 417:111–119

    Article  CAS  Google Scholar 

  20. Bagheri M, Rabieh S (2013) Preparation and characterization of cellulose-ZnO nanocomposite based on ionic liquid ([C4mim]Cl). Cellulose 20:699–705

    Article  CAS  Google Scholar 

  21. Kumar A, Gullapalli H, Balakrishnan K, Botello-Mendez A, Vajtai R, Terrones M, Ajayan PM (2011) Flexible ZnO-cellulose nanocomposite for multisource energy conversion. Small 7:2173–2178

    Article  CAS  Google Scholar 

  22. Costa SV, Goncalves AS, Zaguete MA, Mazon T, Nogueira AF (2013) ZnO nanostructures directly grown on paper and bacterial cellulose substrates without any surface modification layer. Chem Commun 49:8096–8098

    Article  CAS  Google Scholar 

  23. Fu FY, LiL Y, Liu LJ, Cai J, Zhang YP, Zhou JP, Zhang LN (2015) Construction of cellulose based zno nanocomposite films with antibacterial properties through one-step coagulation. ACS Appl Mater Interfaces 7:2597–2606

    Article  CAS  Google Scholar 

  24. Liu J, Xue DF (2008) Thermal oxidation strategy towards porous metal oxide hollow architectures. Adv Mater 20:2622–2627

    Article  CAS  Google Scholar 

  25. Chen KF, Xue DF (2012) pH-assisted crystallization of Cu2O: chemical reactions control the evolution from nanowires to polyhedra. CrystEngComm 14:8068–8075

    Article  CAS  Google Scholar 

  26. Wu J, Xue DF (2011) Crystallization of NaNbO3 microcubes by a solution-phase ion exchange route. Cryst Eng Comm 13:3773–3781

    Article  CAS  Google Scholar 

  27. Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43:6250–6284

    Article  CAS  Google Scholar 

  28. Zhu YJ, Chen F (2014) Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem Rev 114:6462–6555

    Article  CAS  Google Scholar 

  29. Li L, Guo ZP, Du AJ, Liu HK (2012) Rapid microwave-assisted synthesis of Mn3O4–graphene nanocomposite and its lithium storage properties. J Mater Chem 22:3600–3605

    Article  CAS  Google Scholar 

  30. Chen KF, Noh YD, Li KY, Komarneni S, Xue DF (2013) Microwave–hydrothermal crystallization of polymorphic MnO2 for electrochemical energy storage. J Phys Chem C 117:10770–10779

    Article  CAS  Google Scholar 

  31. Qi C, Zhu YJ, Chen F (2014) Microwave hydrothermal transformation of amorphous calcium carbonate nanospheres and application in protein adsorption. ACS Appl Mater Interfaces 6:4310–4320

    Article  CAS  Google Scholar 

  32. Mulinari TA, La Porta FA, Andrés J, Cilense M, Varela JA, Longoet E (2013) Microwave-hydrothermal synthesis of single-crystalline Co3O4 spinel nanocubes. Cryst Eng Comm 15:7443–7449

    Article  CAS  Google Scholar 

  33. Qiu G, Dharmarathna S, Zhang YS, Opembe N, Huang H, Steven LS (2011) Facile microwave-assisted hydrothermal synthesis of CuO nanomaterials and their catalytic and electrochemical properties. J Phys Chem C 116:468–477

    Article  Google Scholar 

  34. Vaiano V, Sacco O, Sannino D, Ciambelli P, Longo S, Vendittob V, Guerrab G (2014) N-doped TiO2/s-PS aerogels for photocatalytic degradation of organic dyes in wastewater under visible light irradiation. J Chem Technol Biot 89:1175–1181

    Article  CAS  Google Scholar 

  35. Ajmal A, Majeed I, Malik RN, Idrissc H, Nadeem MA (2014) Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv 4:37003–37026

    Article  CAS  Google Scholar 

  36. Xue XY, Zang WL, Deng P, Wang Q, Xing LL, Zhang Y, Wang ZL (2015) Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires. Nano Energy 13:414–422

    Article  CAS  Google Scholar 

  37. Zhang XY, Qin JQ, Xue YN, Yu PF, Zhang B, Wang LM, Liu RP (2014) Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci Rep 4:4596. doi:10.1038/srep04596

    Article  Google Scholar 

  38. Nerger BA, Peiris RH, Moresoli C (2015) Fluorescence analysis of NOM degradation by photocatalytic oxidation and its potential to mitigate membrane fouling in drinking water treatment. Chemosphere 136:140–144

    Article  CAS  Google Scholar 

  39. Rokhsat E, Akhavan O (2016) Improving the photocatalytic activity of graphene oxide/ZnO nanorod films by UV irradiation. Appl Surf Sci 371:590–595

    Article  CAS  Google Scholar 

  40. Shanmugam M, Alsalme A, Alghamdi A, Jayavel R (2015) Enhanced photocatalytic performance of the graphene–V2O5 nanocomposite in the degradation of methylene blue dye under direct sunlight. ACS Appl Mater Interfaces 7:14905–14911

    Article  CAS  Google Scholar 

  41. Liang S, Zhu L, Gai G, Yao Y, Huang J, Ji X, Zhou X, Zhang D, Zhang P (2014) Synthesis of morphology-controlled ZnO microstructures via a microwave-assisted hydrothermal method and their gas-sensing property. Ultrason Sonochem 21:1335–1342

    Article  CAS  Google Scholar 

  42. Yu HY, Chen GY, Wang YB, Yao JM (2015) A facile one-pot route for preparing cellulose nanocrystal/zinc oxide nanohybrids with high antibacterial and photocatalytic activity. Cellulose 22:261–273

    Article  CAS  Google Scholar 

  43. Yang RT, Yu HY, Song ML, Zhou YW, Yao JM (2016) Flower-like zinc oxide nanorod clusters grown on spherical cellulose nanocrystals via simple chemical precipitation method. Cellulose 23:1871–1884

    Article  CAS  Google Scholar 

  44. Kumar A, Gullapalli H, Balakrishnan K, Mendez AB, Vajtai R, Terrones M, Ajayanet PM (2011) ZnO–cellulose nanocomposite for multisource energy conversion. Small 7:2173–2178

    Article  CAS  Google Scholar 

  45. Anithaa S, Brabub B, Thiruvadigala DJ, Gopalakrishnanb C, Natarajan TS (2013) Optical, bactericidal and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO. Carbohyd Polym 97:856–863

    Article  Google Scholar 

  46. Islam MU, Khattak WA, Ullah MW, Khan S, Park JK (2014) Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications. Cellulose 21:433–447

    Article  Google Scholar 

  47. Liang YH, Liu XL, Wang LL, Sun JT (2017) The fabrication of microcrystalline cellulose-nano ZnO hybrid composites and their application in rubber compounds. Carbohyd Polym 169:324–331

    Article  CAS  Google Scholar 

  48. Sun L, Shao R, Chen ZD, Tang LQ, Dai Y, Ding JF (2012) Alkali-dependent synthesis of flower-like ZnO structures with enhanced photocatalytic activity via a facile hydrothermal method. Appl Surf Sci 258:5455–5461

    Article  CAS  Google Scholar 

  49. Fageria P, Gangopadhyay S, Pande S (2014) Synthesis of ZnO/Au and ZnO/Ag nanoparticles and their photocatalytic application using UV and visible light. RSC Adv 4:24962–24972

    Article  CAS  Google Scholar 

  50. Barud HS, Barrios C, Regiani T, Marques RFC, Verelst M, Dexpert-Ghys J, Messaddeq Y, Ribeiro SJL (2008) Self-supported silver nanoparticles containing bacterial cellulose membranes. Mat Sci Eng C 28:515–518

    Article  CAS  Google Scholar 

  51. Fu LH, Ma MG, Bian J, Deng F, Du X (2014) Research on the formation mechanism of composites from lignocelluloses and CaCO3. Mat Sci Eng C 44:216–224

    Article  CAS  Google Scholar 

  52. Tang X, Choo ESG, Li L, Ding J, Xue JM (2009) One-pot synthesis of water-stable ZnO nanoparticles via a polyol hydrolysis route and their cell labeling applications. Langmuir 25:5271–5275

    Article  CAS  Google Scholar 

  53. Huang CC, Aronstam RS, Chen DR, Huang YW (2010) Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol In Vitro 24:45–55

    Article  CAS  Google Scholar 

  54. Azizi S, Mohamad R, Rahim RA, Moghaddam AB, Moniri M, Ariff A, Saad WZ, Namvab F (2016) ZnO–Ag core shell nanocomposite formed by green method using essential oil of wild ginger and their bactericidal and cytotoxic effects. Appl Surf Sci 384:517–524

    Article  CAS  Google Scholar 

  55. Barui AK, Nethi SK, Patra CR (2017) Investigation of the role of nitric oxide driven angiogenesis by zinc oxide nanoflowers. J Mater Chem B 5:3391–3403

    Article  CAS  Google Scholar 

  56. Song WH, Zhang JY, Guo J, Zhang JH, Ding F, Li LY, Sun ZT (2010) Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol Lett 199:389–397

    Article  CAS  Google Scholar 

  57. Jafarirad S, Mehrabi M, Divband B, Kosari-Nasab M (2016) Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: a mechanistic approach. Mater Sci Eng, C 59:296–302

    Article  CAS  Google Scholar 

  58. Valipour M (2014) Application of new mass transfer formulae for computation of evapotranspiration. J Appl Water Eng Res 2:33–46

    Article  Google Scholar 

  59. Valipour M (2014) Analysis of potential evapotranspiration using limited weather data. Appl Water Sci 7:187–197

    Article  Google Scholar 

  60. Valipour M (2016) Variations of land use and irrigation for next decades under different scenarios. Irriga 1:262–288

    Article  Google Scholar 

  61. Valipour M (2016) How much meteorological information is necessary to achieve reliable accuracy for rainfall estimations? Agriculture 6:53. doi:10.3390/agriculture6040053

    Article  Google Scholar 

  62. Valipour M, Sefidkouhi MAG, Raeini M (2017) Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. Agr Water Manage 180:50–60

    Article  Google Scholar 

  63. Azizian S (2004) Kinetic models of sorption: a theoretical analysis. J Colloid Interface Sci 276:47–52

    Article  CAS  Google Scholar 

  64. Yoon SY, Lee CG, Park JA, Kim JH, Kim SB, Lee SH, Choi JW (2014) Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles. Chem Eng J 236:341–347

    Article  CAS  Google Scholar 

  65. Simonin JP (2016) On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem Eng J 300:254–263

    Article  CAS  Google Scholar 

  66. Saravanan R, Shankar H, Prakash T, Narayananb V, Stephena A (2011) ZnO/CdO composite nanorods for photocatalytic degradation of methylene blue under visible light. Mater Chem Phys 125:277–280

    Article  CAS  Google Scholar 

  67. Wang YJ, Shi R, Lin J, Zhou YF (2011) Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energ Environ Sci 4:2922–2929

    Article  CAS  Google Scholar 

  68. Tan WK, Razak KA, Lockman Z, Kawamura G, Muto H, Matsuda A (2014) Synthesis of ZnO nanorod–nanosheet composite via facile hydrothermal method and their photocatalytic activities under visible-light irradiation. J Solid State Chem 211:146–153

    Article  CAS  Google Scholar 

  69. Ahmad M, Ahmed E, Hong ZL, Xu JF, Khalid NR, Elhissi A, Ahmedc W (2013) A facile one-step approach to synthesizing ZnO/graphene composites for enhanced degradation of methylene blue under visible light. Appl Surf Sci 274:273–281

    Article  CAS  Google Scholar 

  70. Zhang XY, Wu JN, Meng GH, Guo XH, Liu C, Liu ZY (2016) One-step synthesis of novel PANI–Fe3O4@ ZnO core–shell microspheres: an efficient photocatalyst under visible light irradiation. Appl Surf Sci 366:486–493

    Article  CAS  Google Scholar 

  71. Chen DM, Wang KW, Ren TZ, Ding H, Zhu YF (2014) Synthesis and characterization of the ZnO/mpg-C3N4 heterojunction photocatalyst with enhanced visible light photoactivity. Dalton Trans 43:13105–13114

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of this work by the Fundamental Research Funds for the Central Universities (No. 2017ZY49, 2015ZCQ-CL-03) and the Foundation (No. KF201607) of Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education/Shandong Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Guo Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Yao, K., Wang, B. et al. Microwave-assisted hydrothermal synthesis of cellulose/ZnO composites and its thermal transformation to ZnO/carbon composites. Iran Polym J 26, 681–691 (2017). https://doi.org/10.1007/s13726-017-0553-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-017-0553-x

Keywords

Navigation