Skip to main content
Log in

Impact of heating mode in synthesis of monodisperse iron-oxide nanoparticles via oleate decomposition

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The present work introduces the optimization of a synthetic procedure for oleate-coated iron-oxide nanoparticles by the thermal decomposition of Fe oleate dried at 30 and 70 °C in high-boiling organic solvents. The attention is focused on the temperature of the thermal decomposition, the nature of organic solvent, heating rate and the mode of the heating. In particular, heating on Wood alloy with simultaneous bubbling of argon through the reaction mixture versus the heating on mantel with magnetic stirring is highlighted as a route to improve the monodispersity of the nanoparticles. The effect of heating mode and rate on the nanoparticles size is estimated. The obtained tendencies point to the heating mode and rate as additional factors affecting the kinetic separation between nucleation and nanoparticle growth processes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M. Halupka-Bryl, M. Bednarowicz, B. Dobozs, R. Krzyminiewski, T. Zalewski, B. Wereszczynska, G. Novaczyk, M. Jarek, Y. Nagasaki, Doxorubicin loaded PEG-b-poly(4-vinylbenzylphosphonate) coated magnetic iron oxide nanoparticles for targeted drug delivery. J. Magn. Magn. Mater. 384, 320–327 (2015)

    Article  CAS  Google Scholar 

  2. M. Talelli, C.J.F. Rijcken, T. Lammers, P.R. Seevinck, G. Storm, C.F. van Nostrum, W.E. Hennink, Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles: toward a targeted nanomedicine suitable for image-guided drug delivery. Langmuir 25, 2060–2067 (2009)

    Article  CAS  Google Scholar 

  3. M. Beygzadeh, M. Alizadeh, M.M. Khodaei, D. Kordestani, Biguanide/Pd(OAc)2 immobilized on magnetic nanoparticle as a recyclable catalyst for the heterogeneous Suzuki reaction in aqueous media. Catal. Commun. 32, 86–91 (2013)

    Article  CAS  Google Scholar 

  4. R.R. Shah, T.P. Davis, A.L. Glover, D.E. Nikles, C.S. Brazel, Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia. J. Magn. Magn. Mater. 387, 96–106 (2015)

    Article  CAS  Google Scholar 

  5. G. Frolov, Film carriers for super-high-density magnetic storage. Tech. Phys. 12, 410–414 (2000)

    Google Scholar 

  6. M. Lewin, N. Carlesso, C.H. Tung, X.W. Tang, D. Cory, D.T. Scadden, R. Weissleder, Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 18, 410–414 (2000)

    Article  CAS  Google Scholar 

  7. E. Amstad, S. Zurcher, A. Mashaghi, J.Y. Wong, M. Textor, E. Reimhult, Surface functionalization of single superparamagnetic iron oxide nanoparticles for targeted magnetic resonance imaging. Small 5, 1334–1342 (2009)

    Article  CAS  Google Scholar 

  8. D.G. You, G. Saravanakumar, S. Son, H.S. Han, R. Heo, K. Kim, I.C. Kwon, Y.G. Lee, J.H. Park, Dextran sulfate-coated superparamagnetic iron oxide nanoparticles as a contrast agent for atherosclerosis imaging. Carbohydr. Polym. 101, 1225–1233 (2014)

    Article  CAS  Google Scholar 

  9. M. Corti, A. Lascialfari, M. Marinone, A. Masotti, E. Micotti, F. Orsini, G. Ortaggi, G. Poletti, C. Innocenti, C. Sangregorio, Magnetic and relaxometric properties of polyethylenimine-coated superparamagnetic MRI contrast agents. J. Magn. Magn. Mater. 320, e316–e319 (2008)

    Article  CAS  Google Scholar 

  10. M. Branca, M. Marciello, D. Ciuculescu-Pradines, M. Respaud, del P.M. Morales, R. Serra, M.-J. Casanove, C. Amiens, Towards MRI T2 contrast agents of increased efficiency. J. Magn. Magn. Mater. 377, 348–353 (2015)

    Article  CAS  Google Scholar 

  11. C.-L. Lin, C.-F. Lee, W.-Y. Chiu, Preparation and properties of poly(acrylic acid) oligomer stabilized superparamagnetic ferrofluid. Colloids Surf. A 370, 1–5 (2005)

    Google Scholar 

  12. D. Ramimoghadam, S. Bagheri, S.B.A. Hamid, In-situ precipitation of ultra-stable nano-magnetite slurry. J. Magn. Magn. Mater. 379, 74–79 (2015)

    Article  CAS  Google Scholar 

  13. D. Ramimoghadam, S. Bagheri, A.T. Yousefi, S.B.A. Hamid, Statistical optimization of effective parameters on saturation magnetization of nanomagnetite particles. J. Magn. Magn. Mater. 393, 30–35 (2015)

    Article  CAS  Google Scholar 

  14. R.Y. Hong, B. Feng, L.L. Chen, G.H. Liu, H.Z. Li, Y. Zheng, D.G. Wei, Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles. Biochem. Eng. J. 42, 290–300 (2008)

    Article  CAS  Google Scholar 

  15. D. Ramimoghadam, S. Bagheri, S.B.A. Hamid, Progress in electrochemical synthesis of magnetic iron oxide nanoparticles. J. Magn. Magn. Mater. 368, 207–229 (2014)

    Article  CAS  Google Scholar 

  16. H. Wang, S. Liu, X. Yang, R. Yuan, Y. Chai, Mixed-phase iron oxide nanocomposites as anode materials for lithium-ion batteries. J. Power Sources 276, 170–175 (2015)

    Article  CAS  Google Scholar 

  17. R. Vijayakumar, Yu. Koltypin, I. Felner, A. Gedanken, Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Mater. Sci. Eng., A 286(1), 101–105 (2000)

    Article  Google Scholar 

  18. A. Stepanov, V. Burilov, M. Pinus, A. Mustafina, M. Rümmeli, R. Mendes, R. Amirov, S. Lukashenko, E. Zvereva, S. Katsuba, J. Elistratova, I. Nizameev, M. Kadirov, R. Zairov, Water transverse relaxation rates in aqueous dispersions of superparamagnetic iron oxide nanoclusters with diverse hydrophilic coating. Colloids Surf. A 443, 450–458 (2014)

    Article  CAS  Google Scholar 

  19. D. Ramimoghadam, S. Bagheri, S.B.A. Hamid, Stable monodisperse nanomagnetic colloidal suspensions: an overview. Colloids Surf. B 133, 388–411 (2015)

    Article  CAS  Google Scholar 

  20. Q. Yu, A. Fu, H. Li, H. Liu, R. Lv, J. Liu, P. Guo, X.S. Zhao, Synthesis and characterization of magnetically separable Ag nanoparticles decorated mesoporous Fe3O4@carbon with antibacterial and catalytic properties. Colloids Surf. A 457, 288–296 (2014)

    Article  CAS  Google Scholar 

  21. J. Wang, B. Zhang, L. Wang, M. Wang, F. Gao, One-pot synthesis of water-soluble superparamagnetic iron oxide nanoparticles and their MRI contrast effects in the mouse brains. Mater. Sci. Eng., C 48, 416–423 (2015)

    Article  CAS  Google Scholar 

  22. D. Kim, N. Lee, M. Park, B.H. Kim, K. An, T. Hyeon, Synthesis of uniform ferrimagnetic magnetite nanocubes. J. Am. Chem. Soc. 131, 454–455 (2008)

    Article  Google Scholar 

  23. J. Park, K.J. An, Y.S. Hwang, J.-G. Park, H.J. Noh, Y.G. Kim, H.J. Park, N.M. Hwang, T. Hyeon, Ultra large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891–895 (2004)

    Article  CAS  Google Scholar 

  24. Z. Chen, Size and shape controllable synthesis of monodisperse iron oxide nanoparticles by thermal decomposition of iron oleate complex. Synth. React. Inorg. Met.-Org. Chem. 42, 1040–1046 (2012)

    Article  CAS  Google Scholar 

  25. J. Huang, L. Wang, X. Zhong, Y. Li, L. Yang, H. Mao, Facile non-hydrothermal synthesis of oligosaccharide coated sub-5 nm magnetic iron oxide nanoparticles with dual MRI contrast enhancement effects. J. Mater. Chem. B. 2, 5344–5351 (2015)

    Article  Google Scholar 

  26. L.M. Bronstein, X. Huang, J. Retrum, A. Schmucker, M. Pink, B.D. Stein, B. Dragnea, Influence of iron oleate complex structure on iron oxide nanoparticle formation. Chem. Mater. 19, 3624–3632 (2007)

    Article  CAS  Google Scholar 

  27. W. Xiao, H. Gu, D. Li, D. Chen, X. Deng, Z. Jiao, J. Lin, Microwave-assisted synthesis of magnetite nanoparticles for MR blood pool contrast agents. J. Magn. Magn. Mater. 324, 488–494 (2012)

    Article  CAS  Google Scholar 

  28. T. Gonzales-Carreno, M.P. Morales, M. Gracia, C.J. Serna, Preparation of uniform γ-Fe2O3 particles with nanometer size by spray pyrolysis. Materials Lett. 18, 151–155 (1993)

    Article  Google Scholar 

Download references

Acknowledgments

We are very thankful to Russian Fund for Basic Research (Project Number 13-03-12436_ofi_M2) for financial support. Mark H. Rümmeli thanks the IBS Korea (IBS-RO11-D1). Microscopic investigations for 1C sample were carried out in the laboratory “Transmission electron microscopy” of Kazan National Research Technological University. Electron microscopy characterization of 1D sample was performed in the Department of Structural Studies of Zelinsky Institute of Organic Chemistry, Moscow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Stepanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanov, A., Mustafina, A., Mendes, R.G. et al. Impact of heating mode in synthesis of monodisperse iron-oxide nanoparticles via oleate decomposition. J IRAN CHEM SOC 13, 299–305 (2016). https://doi.org/10.1007/s13738-015-0737-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-015-0737-2

Keywords

Navigation