Skip to main content
Log in

A wastewater treatment using a biofilm airlift suspension reactor with biomass attached to supports: a numerical model

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

A mathematical model of the biological process occurring in a modified biofilm airlift suspension reactor is presented. When compared with a traditional wastewater treatment plant, a biofilm airlift suspension process has major advantages, such as higher oxygen levels in the bulk fluid and lower space requirements. The limited volumes obtained with this technique generally do not allow to reach the high times of contact required for an efficient removal of nitrogen that normally are characterized by a slower kinetics than carbonaceous compounds. To avoid this problem, supports for attached biomass growth were inserted in the reactor. Both physical and biological aspects were incorporated into the presented model to simulate the removal processes of the substrates. A sensitivity analysis was performed, and the model was validated using experimental results obtained at a lab-scale plant. This model can accurately estimate the removal rate in different boundary conditions providing the details of the water quality profiles through the reactor and in the attached biomass. The model thus represents a valid aid for design purposes and for the management of treatment plants that use these uncommon reactors. The model also provides the required hydraulic retention time for a complete nitrification and the appropriate recirculation ratio. The results have shown the full-scale applicability of this treatment due to its efficiencies coupled to the advantages of its low impact, low space requirement and low sludge production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akhbari A, Zinatizadeh AAL, Mohammadi P, Mansouri Y, Irandoust M, Isa MH (2012) Kinetic modeling of carbon and nutrients removal in an integrated rotating biological contactor-activated sludge system. Int J Environ Sci Technol 9(2):371–378

    Article  CAS  Google Scholar 

  • Beccari M, Passino R, Ramadori R, Vismara R (1993) Rimozione di Azoto e Fosforo dai Liquami. Hoepli, Italy

    Google Scholar 

  • Beyenal H, Lewandowski Z (2005) Modeling mass transport and microbial activity in stratified biofilms. Chem Eng Sci 60:4337–4348

    Article  CAS  Google Scholar 

  • Borden RC, Bedient PB (1986) Transport OD dissolved hydrocarbons influenced by oxygen-limited biodegradation 1. Theoretical development. Water Res 22(13):1973–1982

    Article  CAS  Google Scholar 

  • Characklis WG, Marshall KC (1989) Biofilms. Wiley Interscience, New York

    Google Scholar 

  • Devinny JS, Ramesh J (2005) A phenomenological review of biofilter models. Chem Eng J 113:187–196

    Article  CAS  Google Scholar 

  • Eaton AD, APHA, AWWA, WEF (2005) Standard methods for the examination of water and wastewater. 21st edn. American Public health Association, Washington, DC

  • Eramo B, Gavasci R, Misiti A, Viotti P (1994) Validation of a multisubstrate mathematical model for the simulation of the denitrification process in fluidized bed biofilm reactors. Water Sci Technol 29(10–11):401–408

    CAS  Google Scholar 

  • De Feo (2007) Carbon and nitrogen removal from low-strength domestic wastewater with a two-stage submerged biological filter. J Environ Sci Health A Tox Hazard Subst Environ Eng 42(5):641–647

    Article  CAS  Google Scholar 

  • Harremoës P (1976) The significance of pore diffusion to filter denitrification. J Water Pollut Con F 48:377–388

    Google Scholar 

  • Hille A, Mei HE, Ochmann C, Neu TR, Horn H (2009) Application of two component biodegradable carriers in a particle-fixed biofilm airlift suspension reactor: development and structure of biofilms. Bioprocess Biosyst Eng 32:31–39

    Article  CAS  Google Scholar 

  • Horn H, Hempel DC (2001) Simulation of substrate conversion and mass transport in biofilm systems. Eng Life Sci 1(6):225–228

    Article  CAS  Google Scholar 

  • Horn H, Morgenroth E (2006) Transport of oxygen, sodium chloride, and sodium nitrate in biofilms. Chem Eng Sci 61:1347–1356

    Article  CAS  Google Scholar 

  • Hwang YW, Kim CG, Choo IJ (2005) Simultaneous nitrification/denitrification in a single reactor using ciliated columns packed with granular sulfur. Water Qual Res J Can 40(1):91–96

    CAS  Google Scholar 

  • Jiang F, Leung DH-W, Li S, Chen G-H, Okabe S, van Loosdrecht MCM (2009) A biofilm model for prediction of pollutant transformation in sewers. Water Res 43:3187–3198

    Article  CAS  Google Scholar 

  • Klapper I, Dockery J (2010) Mathematical description of microbial biofilms. Siam review. Soc Ind Appl Math 52(2):221–246

    Google Scholar 

  • La Motta EJ, Mulcahy LT (1978) Mathematical model of the fluidized bed biofilm reactor. Department of Civil Engineering, University of Massachusetts, Amherst. Report No Env: E 59–78

  • Luciano A, Viotti P, Mancini G, Torretta V (2012) An integrated wastewater treatment system using a bas reactor with biomass attached to tubular supports. J Environ Manag 113:51–60

    Article  CAS  Google Scholar 

  • Matsumoto S, Terada A, Tsuneda S (2007) Modeling of membrane-aerated biofilm: effects of C/N ratio, biofilm thickness and surface loading of oxygen on feasibility of simultaneous nitrification and denitrification. Eng J 37:98–107

    CAS  Google Scholar 

  • Metcalf and Eddy 2003. Wastewater engineering: treatment and reuse. 4th edn, McGraw Hill, New York, pp 1819

  • Morgenroth E, Eberl HJ, van Loosdrecht MCM, Noguera DR, Pizarro GE, Picioreanu C, Rittmann BE, Schwarz AO, Wanner O (2004) Comparing biofilm models for a single species biofilm system. Water Sci Technol 4:145–154

    Google Scholar 

  • Mudliar S, Banerjee S, Vaidya A, Devotta S (2008) Steady state model for evaluation of external and internal mass transfer effects in an immobilized biofilm. Bioresour Technol 99:3468–3474

    Article  CAS  Google Scholar 

  • Nicolella C, van Loosdrecht MCM, Heijnen JJ (1998) Mass transfer and reaction in a biofilm airlift suspension reactor. Chem Eng Sci 53(15):2743–2753

    Article  CAS  Google Scholar 

  • Nicolella C, van Loosdrech MCM, Heijnene SJ (2000) Particle-based biofilm reactor technology. Trends Biotechnol 18(7):312–320

    Article  CAS  Google Scholar 

  • Noguera DR, Okabe S, Picioreanu C (1999) Biofilm modeling: present status and future directions. Water Sci Technol 39(7):273–278

    Article  Google Scholar 

  • Okabe S, Hiratia K, Ozawa Y, Watanabe Y (1996) Spatial microbial distributions of nitrifiers and heterotrophs in mixed-population biofilms. Biotechnol Bioeng 50:24–35

    Article  CAS  Google Scholar 

  • Paolini AE (1988) Lezioni di trattamento degli effluenti industriali. Ed. Siderea

  • Piciorenau C, Kreft JU, van Loosdrecht MCM (2004) Particle-based multidimensional multispecies biofilm model. Appl Environ Microbiol 70(5):3024–3040

    Article  CAS  Google Scholar 

  • Pizarro G, Griffeath D, Noguera DR (2001) Quantitative cellular automaton model for biofilm. J Environ Eng ASCE 127:782–889

    Article  CAS  Google Scholar 

  • Pochana K, Keller J (1999) Study of factors affecting simultaneous nitrification and denitrification (SND). Water Sci Technol 39(6):61–68

    Article  CAS  Google Scholar 

  • Puznava N, Payraudeau M, Thornberg D (2001) Simultaneous nitrification and denitrification in biofilters with real time aeration control. Water Sci Technol 43(1):269–276

    CAS  Google Scholar 

  • Rahimia Y, Torabiana A, Mehrdadia N, Shahmoradib B (2011) Simultaneous nitrification–denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR). J Hazard Mater 185:852–857

    Article  CAS  Google Scholar 

  • Rahman NK, Bakar MZA, Uzir MH, Kamaruddin AH (2009) Modelling on the effect of diffusive and convective substrate transport for biofilm. Math Biosci 218:130–137

    Article  Google Scholar 

  • Rauch WM, Vanhooren H, Vanrolleghem PA (1999) A simplified mixed-culture biofilm model. Water Res 33(9):2148–2162

    Article  CAS  Google Scholar 

  • Rittmann BE, McCarty PL (1980) Evaluation of steady-state-biofilm kinetics. Biotechnol Bioeng 22(11):2359–2373

    Article  CAS  Google Scholar 

  • Russo ME, Maffettone PL, Marzocchella A, Salatino P (2008) Bifurcational and dynamical analysis of a continuous biofilm reactor. J Biotechnol 135:295–303

    Article  CAS  Google Scholar 

  • Saravanan V, Sreekrishnan TR (2006) Modelling anaerobic biofilm reactor—a review. J Environ Manag 81:1–18

    Article  CAS  Google Scholar 

  • Saravanan V, Sreekrishnan T (2008) A mathematical model for a hybrid anaerobic reactor. J Environ Manag 88:136–146

    Article  CAS  Google Scholar 

  • Satoh H, Nakamura Y, Ono H, Okabe S (2003) Effect of oxygen concentration on nitrification and denitrification in single activated sludge flocs. Biotechnol Bioeng 83:604–607

    Article  CAS  Google Scholar 

  • Satoh H, Onoa H, Rulinb B, Kamoc J, Okabed S, Fukushi KI (2004) Macroscale and microscale analyses of nitrification and denitrification in biofilms attached on membrane aerated biofilm reactors. Water Res 38:1633–1641

    Article  CAS  Google Scholar 

  • Seixo J, Varela MH, Coutinho JAP, Coelho MAZ (2004) Influence of C/N ratio on autotrophic biomass development in a sequencing batch reactor. Biochem Eng J 21:131–139

    Article  CAS  Google Scholar 

  • Splendiani A, Livingston AG, Nicolella C (2006) Control of membrane attached biofilms in the presence of surfactants. Biotechnol Bioeng 94:15–23

    Article  CAS  Google Scholar 

  • Tucker WA, Nelken LH (1982) Neural mechanisms underlying value-based decision making. In: Warren JL, William FR, David HR (eds) Handbook of chemical property estimation methods. American Chemical Society

  • van Haandel A, van der Lubbe J (2007) Handbook biological wastewater treatment. Quist Publishing, Leidschendam

    Google Scholar 

  • Vieira MJ, Melo LF (1999) Intrinsic kinetics of biofilms formed under turbulent flow and low substrate concentration. Bioproc Eng 20:369–375

    Article  CAS  Google Scholar 

  • Viotti P, Eramo B, Boni MR, Carucci A, Leccese M, Sbaffoni S (2002) Development and calibration of a mathematical model for the simulation of the biofiltration process. Adv Environ Res 7:11–33

    Article  CAS  Google Scholar 

  • Walter B, Haase C, Rabiger N (2005) Combined nitrification/denitrification in a membrane reactor. Water Res 39:2781–2788

    Article  CAS  Google Scholar 

  • Walters E, Hillea A, Hea M, Ochmannc C, Horna H (2009) Simultaneous nitrification/denitrification in a biofilm airlift suspension (BAS) reactor with biodegradable carrier material. Water Res 43:4461–4468

    Article  CAS  Google Scholar 

  • Wang XM, Wang JL (2012) Denitrification of nitrate-contaminated groundwater using biodegradable snack ware as carbon source under low temperature condition. Int J Env Sci Technol 9(1):113–118

    Article  CAS  Google Scholar 

  • Wang Q, Zhang T (2010) Review of mathematical models for biofilms. Solid State Commun 150:1009–1022

    Article  CAS  Google Scholar 

  • Wang C, Li J, Wang B, Zhang G (2006) Development of an empirical model for domestic wastewater treatment by biological aerated filter. Process Biochem 41:778–782

    Article  CAS  Google Scholar 

  • Wanner O, Eberl H, Morgenroth E, Noguera D, Picioreanu C, Rittmann B, van Loosdrecht M, IWA Task Group on Biofilm Modeling (2006) Mathematical modeling of biofilms, Report 18. Task group members mathematical models of biofilm. Scientific and Technical IWA Publishing, London

    Google Scholar 

  • Williamson K, Mc Carty PL (1976) A model of substrate utilization by bacterial films. J Water Pollut Con F 48:9–24

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge P&M Srl for providing data information for the design at full scale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Luciano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viotti, P., Luciano, A., Mancini, G. et al. A wastewater treatment using a biofilm airlift suspension reactor with biomass attached to supports: a numerical model. Int. J. Environ. Sci. Technol. 11, 571–588 (2014). https://doi.org/10.1007/s13762-013-0256-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-013-0256-6

Keywords

Navigation