Skip to main content

Advertisement

Log in

Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The ability of heavy metals bioaccumulation to cause toxicity in biological systems—human, animals, microorganisms and plants—is an important issue for environmental health and safety. Recent biotechnological approaches for bioremediation include biomineralization (mineral synthesis by living organisms or biomaterials), biosorption (dead microbial and renewable agricultural biomass), phytostabilization (immobilization in plant roots), hyperaccumulation (exceptional metal concentration in plant shoots), dendroremediation (growing trees in polluted soils), biostimulation (stimulating living microbial population), rhizoremediation (plant and microbe), mycoremediation (stimulating living fungi/mycelial ultrafiltration), cyanoremediation (stimulating algal mass for remediation) and genoremediation (stimulating gene for remediation process). The adequate restoration of the environment requires cooperation, integration and assimilation of such biotechnological advances along with traditional and ethical wisdom to unravel the mystery of nature in the emerging field of bioremediation. This review highlights better understanding of the problems associated with the toxicity of heavy metals to the contaminated ecosystems and their viable, sustainable and eco-friendly bioremediation technologies, especially the mechanisms of phytoremediation of heavy metals along with some case studies in India and abroad. However, the challenges (biosafety assessment and genetic pollution) involved in adopting the new initiatives for cleaning-up the heavy metals-contaminated ecosystems from both ecological and greener point of view must not be ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Ghani NT, Hefny M, El-Chaghaby GAF (2007) Removal of lead from aqueous solution using low cost abundantly available adsorbents. Int J Environ Sci Tech 4(1):67–73

    CAS  Google Scholar 

  • Achal V, Pan X, Zhang D (2011) Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecol Eng 37:1601–1605

    Google Scholar 

  • Achal V, Pan X, Fu Q, Zhang D (2012a) Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli. J Hazar Mater 201–202:178–184

    Google Scholar 

  • Achal V, Pan X, Zhang D (2012b) Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp. Chemosphere 89:764–768

    CAS  Google Scholar 

  • Acheampong MA, Meulepas RJW, Lens PNL (2010) Removal of heavy metals and cyanide from gold mine wastewater. J Chem Technol Biotechnol 85(5):590–613

    CAS  Google Scholar 

  • Adams JA, Reddy KR (2003) Extent of benzene biodegradation in saturated soil column during air sparging. Ground Water Monitor Remediat 23(3):85–94

    CAS  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98(12):2243–2257

    CAS  Google Scholar 

  • Alves RRN, Souto WMS (2011) Ethnozoology in Brazil: current status and perspectives. J Ethnobiol Ethnomed 7:1–22

    Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    CAS  Google Scholar 

  • Atagana HI, Haynes RJ, Wallis FM (2003) Optimization of soil physical and chemical conditions for the bioremediation of creosote-contaminated soil. Biodegradation 14:297–307

    CAS  Google Scholar 

  • Audet P (2013) Examining the ecological paradox of the mycorrhizal-metal-hyperaccumulators. Arch Agron Soil Sci 59(4):549–558

    Google Scholar 

  • Azouaou N, Sadaoui Z, Mokaddem H (2008) Removal of Cadmium from aqueous solution by adsorption on vegetable wastes. J Appl Sci 8(24):4638–4643

    CAS  Google Scholar 

  • Baldwin BR, Peacock AD, Park M, Ogles DM et al (2008) Multilevel samplers as microcosms to assess microbial response to biostimulation. Ground Water 46:295–304

    CAS  Google Scholar 

  • Banuelos G, Terry N, Leduc DL, Pilon-Smits EAH, Mackey B (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ Sci Technol 39:1771–1777

    CAS  Google Scholar 

  • Batayneh AT (2012) Toxic (aluminum, beryllium, boron, chromium and zinc) in groundwater: health risk assessment. Int J Environ Sci Technol 9:153–162

    CAS  Google Scholar 

  • Bennedsen LR, Anne Krischker, Jørgensen TH, Søgaard EG (2012) Mobilization of metals during treatment of contaminated soils by modified Fenton’s reagent using different chelating agents. J Hazard Mater 199–200:128–134

    Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45(3):198–207

    CAS  Google Scholar 

  • Brunetti P, Zanella L, Proia A, Paolis AD, Falasca G, Altamura MM, Toppi LSD, Costantino P, Cardarelli M (2011) Cadmium tolerance and phytochelatin content of Arabidopsis seedlings over-expressing the phytochelatin synthase gene AtPCS1. J Exp Bot 62(15):5509–5519

    CAS  Google Scholar 

  • Brunk E, Ashari N, Athri P, Campomanes P, Carvalho DFF et al (2011) Pursuing the frontiers of the first-principles based computer simulations of chemical and biological systems. Chimia 65(9):667–671

    CAS  Google Scholar 

  • Brunner I, Luster J, Gunthardt GMS, Frey B (2008) Heavy metal accumulation and phytostabilization potential of tree fine roots in a contaminated soil. Environ Pollut 152:559–568

    CAS  Google Scholar 

  • Cardenas E, Wu WM, Leigh MB, Carley J, Carroll S, Gentry T, Luo J, Watson D, Gu B, Ginder-Vogel M et al (2008) Microbial communities in contaminated sediments, associated with bioremediation of uranium to submicromolar levels. Appl Environ Microbiol 74:3718–3729

    CAS  Google Scholar 

  • Chakraborty R, Wu CH, Hazen TC (2012) Systems biology approach to bioremediation. Curr Opin Biotechnol 23:1–8

    Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining echnologies. J Environ Qual 36:1429–1443

    CAS  Google Scholar 

  • Chatterjee S, Singh L, Chattopadhyay B, Datta S, Mukhopadhyay SK (2012) A study on the waste metal remediation using floriculture at East Calcutta Wetlands, a Ramsar site in India. Environ Monit Assess 184:5139–5150

    CAS  Google Scholar 

  • Chauhan A, Jain RK (2010) Biodegradation: gaining insight through proteomics. Biodegradation 21:861–879

    CAS  Google Scholar 

  • Checa SK, Zurbriggen MD, Soncini FC (2012) Bacterial signaling systems as platforms for rational design of new generations of biosensors. Curr Opin Biotechnol 23:766–772

    CAS  Google Scholar 

  • Chen SY, Lin PL (2010) Optimization of operating parameters for the metal bioleaching process of contaminated soil. Separ Purif Technol 71(2):178–185

    CAS  Google Scholar 

  • Chen SY, Lin LG, Lee CY (2003) Effects of ferric ion on bioleaching of heavy metals from contaminated sediment. Water Sci Technol 48(8):151–158

    Google Scholar 

  • Chen Z, Li Z, Lin Y, Yin M, Ren J, Qu X (2013) Biomineralization inspired surface engineering of nanocarriers for pH-responsive, targeted drug delivery. Biomaterials 34:1364–1371

    CAS  Google Scholar 

  • Cheng SS, Hsieh TL, Pan PT, Gaop CH, Chang LH, Whang LM, Chang TC (2009) Study on biomonitoring of aged TPH-contaminated soil with bioaugmentation and biostimulation (Conference paper). 10th International in situ and on-site bioremediation symposium, Baltimore MD, May 5–8, 2009

  • Chikere CB, Chikere BO, Okpokwasili GC (2012) Bioreactor-based bioremediation of hydrocarbon-polluted Niger Delta marine sediment, Nigeria. Biotechnology 2:53–66

    Google Scholar 

  • Choudhary S, Sar P (2011) Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste. J Hazar Mater 186:336–343

    CAS  Google Scholar 

  • Christopher C (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:828–832

    Google Scholar 

  • Clemens S, Palmgren MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    CAS  Google Scholar 

  • Conesa HM, Evangelou MWH, Robinson BH, Schulin R (2012) A critical view of current state of phytotechnologies to remediate soils: still a promising tool? Sci World J. doi:10.1100/2012/173829

    Google Scholar 

  • Cooley A, Rexroad R, Morrisette J, Cobb JA, Blackert D (2009) Biosparging and monitored natural attenuation of hydrocarbon, chlorinated solvent, and arsenic-impacted groundwater. 10th international in situ and on-situ bioremediation symposium. Baltimore MD, May 5–8, 2009

  • Danh LT, Truong P, Mammucari R, Tran T, Foster N (2009) Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. Int J Phytoremediat 11:664–691

    CAS  Google Scholar 

  • Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177(1–3):323–330

    CAS  Google Scholar 

  • de la Fuente C, Clemente R, Martínez-Alcalá I, Tortosa G, Bernal MP (2011) Impact of fresh and composted solid olive husk and their water-soluble fractions on soil heavy metal fractionation; microbial biomass and plant uptake. J Hazard Mater 186(2–3):1283–1289

    Google Scholar 

  • Deng L, Su Y, Su H, Wang X, Zhu X (2007) Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. J Hazard Mater 143(1–2):220–225

    CAS  Google Scholar 

  • Dhankher OP, Doty SL, Meagher RB, Pilon-Smits E (2011) Biotechnological approaches for phytoremediation. In: Altman A, Hasegawa PM (eds) Plant biotechnology and agriculture. Academic Press, Oxford, pp 309–328

    Google Scholar 

  • Dominguez MT, Maranon T, Murillo JM, Schulin R, Robinson BH (2008) Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study. Environ Pollut 152(1):50–59

    CAS  Google Scholar 

  • Dong G, Wang Y, Gong L, Wang M, Wang H, He N, Zheng Y, Li Q (2013) Formation of soluble Cr(III) end-products and nanoparticles during Cr(VI) reduction by Bacillus cereus strain XMCr-6. Biochem Eng J 70:166–172

    CAS  Google Scholar 

  • Doran PM (2009) Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol Bioeng 103:60–76

    CAS  Google Scholar 

  • Dowarah J, Boruah HPD, Gogoi J, Pathak N, Saikia N, Handique AK (2009) Eco-restoration of a high-sulphur coal mine overburden dumping site in northeast India: a case study. J Earth Syst Sci 118(5):597–608

    Google Scholar 

  • Drewniak L, Sklodowska A (2013) Arsenic transforming microbes and their role in biomining processes. Environ Sci Pollut Res (in press PMID: 23299972)

  • Dua M, Sethunathan N, Johri AK (2002) Biotechnology bioremediation success and limitations. App Microbiol Biotechnol 59(2–3):143–152

    CAS  Google Scholar 

  • Dubey A, Shiwani S (2012) Adsorption of lead using a new green material obtained from Portulaca plant. Int J Environ Sci Technol 9:15–20

    CAS  Google Scholar 

  • Dubey SK, Dubey J, Mehra S, Tiwari P, Bishwas AJ (2011) Potential use of cyanobacterial species in bioremediation of industrial effluents. Afr J Biotechnol 10(7):1125–1132

    Google Scholar 

  • Dudhane M, Borde M, Jite PK (2012) Effect of aluminium toxicity on growth responses and antioxidant activities in Gmelina arborea Roxb inoculated with AM Fungi. Int J Phytoremediat 14(7):643–655

    CAS  Google Scholar 

  • Duong TTT, Verma SL, Penfold C, Marschner P (2013) Nutrient release from composts into the surrounding soil. Geoderma 195–196:42–47

    Google Scholar 

  • Ekmekyapar F, Aslan A, Bayhan YK, Cakici A (2012) Biosorption of Pb(II) by Nonliving Lichen Biomass of Cladonia rangiformis Hoffm. Int J Environ Res 6(2):417–424

    CAS  Google Scholar 

  • Ernst WHO (2006) Evolution of metal tolerance in higher plants. For Snow Landsc Res 80:251–274

    Google Scholar 

  • Fiset JF, Blais JF, Riverso PA (2008) Review on the removal of metal ions from effluents using seaweeds, alginate derivatives and other sorbents. Rev Sci Eau 21(3):283–308

    CAS  Google Scholar 

  • Fulekar MH, Sharma J, Tendulkar A (2012) Bioremediation of heavy metals using biostimulation in laboratory bioreactor. Environ Monit Assess 184(12):7299–7307

    CAS  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534

    CAS  Google Scholar 

  • Geneve JD, Fernandez M (2008) New avenues for microbial biotechnology: the beginning of a golden era. Microbiol Biotechnol 1(2):104–106

    Google Scholar 

  • Gisbert C, Ros R, Haro AD, Walker DJ, Bernal MP, Serrano R, Navarro-Avino J (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–445

    CAS  Google Scholar 

  • Gonzalez OJ, Rozas MA, Alkorta I, Garbisu C (2008) Dendroremediation of heavy metal polluted soils. Rev Environ Health 23:223–234

    Google Scholar 

  • Govarthanan M, Lee KJ, Cho M, Kim JS, Kamala-Kannan S, Oh BT (2013) Significance of autochthonous Bacillus sp. KK1 on biomineralization of lead in mine tailings. Chemosphere 8:2267–2272

    Google Scholar 

  • Guo H, Luo S, Chen L, Xiao X, Xi Q, Wei W, Zeng G, Liu C, Wan Y, Chen J, He Y (2010) Bioremediation of heavy metals by growing hyperaccumulator endophytic bacterium Bacillus sp. L14. Bioresour Technol 101(22):8599–8605

    CAS  Google Scholar 

  • Guo B, Liang Y, Qinglin F, Ding N, Liu C, Lin Y, Li H, Li N (2012a) Cadmium stabilization with nursery stocks through transplantation: a new approach of phytoremediation. J Hazard Mater 199–200:233–239

    Google Scholar 

  • Guo J, Xu W, Ma M (2012b) The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana. J Hazard Mater 199–200:309–313

    Google Scholar 

  • Gupta R, Mahapatra H (2003) Microbial biomass: an economical alternative for removal of heavy metals from wastewater. Indian J Exp Biol 41:945–966

    CAS  Google Scholar 

  • Hassan MM (2005) Arsenic poisoning in Bangladesh: spatial mitigation planning with GIS and public participation. Health Policy 74:247–260

    Google Scholar 

  • Häyrynen P, Landaburu JA, Pongrácz E, Keiski RL (2012) Study of permeate flux in micellar-enhanced ultrafiltration on a semi-pilot scale: simultaneous removal of heavy metals from phosphorous rich real wastewaters. Separ Purif Technol 93(1):59–66

    Google Scholar 

  • Hazen TC (2010) In situ: groundwater bioremediation. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2583–2594

    Google Scholar 

  • Helalia AM, El-Amir S, Abou-Zeid ST, Zagholoul KF (1990) Bioremediation of saline-sodic soil by amshot grass in northern Egypt. Soil Till Res 22:109–116

    Google Scholar 

  • Hemme CL, Deng Y, Gentry TJ, Fields MW, Wu L, Barua S, Barry K et al (2010) Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community. ISME J 4:660–672

    CAS  Google Scholar 

  • Hrynkiewicz K, Dabrowska G, Baum C, Niedojadlo K, Leinweber P (2012) Interactive and single effects of ectomycorrhiza formation and Bacillus cereus on metallothionein MT1 expression and phytoextraction of Cd and Zn by Willows. Water Air Soil Pollut 223:957–968

    CAS  Google Scholar 

  • Iori V, Pietrini F, Cheremisina A, Shevyakova NI, Radyukina N, Kuzntsov VV, Zacchini M (2013) Growth responses, metal accumulation and phytoremoval capability in Amaranthus plants exposed to nickel under hydroponics. Water Air Soil Pollut 224(2):1–10

    CAS  Google Scholar 

  • Ismail BS, Farihah K, Khairiah J (2005) Bioaccumulation of heavy metals in vegetables from selected agricultural areas. Bull Environ Contam Toxicol 74:320–327

    CAS  Google Scholar 

  • ITRC (2009) (Interstate Technology & Regulatory Council) Phytotechnology technical and regulatory guidance and decision trees, Revised. PHYTO-3. Washington DC

  • Jadia CD, Fulekar MH (2008) Vermicomposting of vegetable waste: A biophysicochemical process based on hydro-operating bioreactor. African J Biotechnol 7(20):3723–3730

    CAS  Google Scholar 

  • Jeffries TC, Seymour JR, Newton K, Smith RJ, Seuront L, Mitchell JG (2012) Increases in the abundance of microbial genes encoding halotolerance and photosynthesis along a sediment salinity gradient. Biogeosciences 9(2):815–825

    CAS  Google Scholar 

  • Jiang CY, Sheng XF, Qian M, Wang QY (2008) Isolation and characterization of heavy metal resistant Burkholderia species from heavy metal contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal polluted soil. Chemosphere 72:157–164

    CAS  Google Scholar 

  • Jiang J, Xu RK, Jiang TY, Li Z (2012a) Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J Hazard Mater 229:145–150

    Google Scholar 

  • Jiang X, Wang W, Wang S, Zhang B, Hu J (2012b) Initial identification of heavy metals contamination in Taihu Lake, a eutrophic lake in China. J Environ Sci 24(9):1539–1548

    CAS  Google Scholar 

  • Juwarkar AA, Singh SK (2010) Microbe-assisted phytoremediation approach for ecological restoration of zinc mine spoil dump. Int J Environ Pollut 43(1/2/3): 236–250

    Google Scholar 

  • Juwarkar AA, Yadav SK, Thawale PR, Kumar P, Singh SK, Chakrabarti T (2009) Developmental strategies for sustainable ecosystem on mine spoil dumps: a case of study. Environ Monit Assess 157:471–481

    CAS  Google Scholar 

  • Kanmani P, Aravind J, Preston D (2012) Remediation of chromium contaminants using bacteria. Int J Environ Sci Technol 9:183–193

    CAS  Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res. doi:10.4061/2011/805187

    Google Scholar 

  • Kastenhofer K (2007) Converging epistemic cultures? Innovation 20(4):359–373

    Google Scholar 

  • Kawalec M, Dove AP, Mespouille L, Dubois P (2013) Morpholine- functionalized polycarbonate hydrogels for heavy metal ion sequestration. Polymer Chem 4(4):1260–1270

    CAS  Google Scholar 

  • Kensa MV (2011) Bioremediation: an overview. J Ind Pollut Control 27(2):161–168

    CAS  Google Scholar 

  • Kim S, Park CB (2013) Bio-inspired synthesis of minerals for energy, environment and medicinal applications. Adv Funct Mater 23:10–25

    CAS  Google Scholar 

  • Kim TW, Slowing II, Chung PW, Lin VSY (2010) Ordered mesoporous polymer-silica hybrid nanoparticles as vehicles for the intracellular controlled release of macromolecules. ACS Nano 5:360–365

    Google Scholar 

  • Kiyono M, Oka Y, Sone Y, Tanaka M, Nakamura R, Sato MH, Pan-Hou H, Sakabe K, Inoue K (2012) Expression of bacterial heavy metal transporter MerC fused with a plant SNARE, SYP121 in Arabidopsis thaliana increases cadmium accumulation and tolerance. Planta 235:841–850

    CAS  Google Scholar 

  • Klassen SP, Malean JE, Grossl PR, Sims RC (2000) Heavy metals in the environment. J Environ Qual 29:1826–1834

    CAS  Google Scholar 

  • Komives T, Gullner G (2006) Dendroremediation: the use of trees in cleaning up polluted soils. Phytoremediat Rhizoremediat pp 23–31

  • Kramer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Google Scholar 

  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44

    CAS  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microb Interact 17:6–15

    CAS  Google Scholar 

  • Kumar C, Mani D (2010) Enrichment and management of heavy metals in sewage irrigated soil. LAP LAMBERT Academic Publishing AG & Co. KG, Saarbrücken

    Google Scholar 

  • Kumar C, Mani D (2012) Advances in bioremediation of heavy metals: a tool for environmental restoration. LAP LAMBERT Academic Publishing AG & Co. KG, Saarbrücken

    Google Scholar 

  • Kumar JIN, Soni H, Kumar RN, Bhatt I (2008a) Macrophytes in Phytoremediation of heavy metal contaminated water and sediments in Pariyej community reserve, Gujarat, India. Turk J Aquat Fish Sci 8:193–200

    Google Scholar 

  • Kumar R, Joshi SR, Acharya C (2008b) Metal tolerant Bacillus and Pseudomonas from uranium rich soils of Meghalaya. Res J Biotechnol (Special Issue) pp 345–350

  • Kumar A, Bisht BS, Joshi VD, Dhewa T (2011a) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1(6):1079–1093

    Google Scholar 

  • Kumar R, Acharya C, Joshi SR (2011b) Isolation and analyses of uranium tolerant Serratia marcescens strains and their utilization for aerobic uranium U(VI) bioadsorption. J Microbiol 49(4):568–574

    CAS  Google Scholar 

  • Kumar D, Shivay YS, Dhar S, Kumar C, Prasad R (2013) Rhizospheric flora and the influence of agronomic practices on them: a review. Proc Nat Acad Sci India Sec B Biol Sci 83(1):1–14

    Google Scholar 

  • Kumari B, Singh SN (2011) Phytoremediation of metals from fly ash through bacterial augmentation. Ecotoxicology 20:166–176

    CAS  Google Scholar 

  • Landaburu-Aguirre J, Pongrácz E, Sarpola A, Keiski RL (2012) Simultaneous removal of heavy metals from phosphorous rich real wastewaters by micellar-enhanced ultrafiltration. Separ Purif Technol 88:130–137

    CAS  Google Scholar 

  • Lee YC, Chang SP (2011) The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresource Technol 102 (9):5297–5304

    CAS  Google Scholar 

  • Lee CS, Li XD, Shi WZ, Cheung SC, Thornton I (2006) Metal contamination in urban, suburban and country park soils of Hong Kong: a study based on GIS and multivariate statistics. Sci Total Environ 356:45–61

    CAS  Google Scholar 

  • Lesmana SO, Febriana N, Soetaredjo FE, Sunarso J, Ismadji S (2009) Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem Engg J 44(1):19–41

    CAS  Google Scholar 

  • Leung M (2004) Bioremediation: techniques for cleaning up a mess. J Biotechnol 2:18–22

    Google Scholar 

  • Li L, Cunningham CJ, Pas V, Philp JC, Barry DA, Anderson P (2004) Field trial of a new aeration system for enhancing biodegradation. Waste Manag 24:127–137

    CAS  Google Scholar 

  • Li M, Cheng X, Guo H (2013) Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. Int Biodeterior Biodegr 76:81–85

    CAS  Google Scholar 

  • Lin QUR, Sen LD, Qian DUR, Yao JM (2002) Phytoremediation for heavy metal pollution in water II. The blastofiltration of Pb from water. J Agro Environ Sci. http://en.cnki.com.cn/Article_en/CJFDTOTAL-NHBH200206005.htm

  • Liu D, Zou J, Wang M, Jiang W (2008) Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in Amaranthus viridis L. Bioresour Technol 99(7):2628–2636

    CAS  Google Scholar 

  • Loukidou MX, Matis KA, Zouboulis AI, Liakopoulou-Kyriakidou M (2003) Removal of As(V) from wastewaters by chemically modified fungal biomass. Water Res 37(18):4544–4552

    CAS  Google Scholar 

  • Lyyra S, Meagher RB, Kim T, Heaton A et al (2007) Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury. Plant Biotechnol J 5:254–262

    CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    CAS  Google Scholar 

  • Ma X, Nonvak PJ, Ferguson J, Sadowsky M et al (2007) The impact of H2 addition or dechlorinating microbial communities. Bioremed J 11:45–55

    CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu XY et al (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci USA 105:9931–9935

    CAS  Google Scholar 

  • Machackova J, Wittlingerova Z, Vlk K, Zima J (2012) Major factors affecting in situ biodegradation rates of jet-fuel during large-scale biosparging project in sedimentary bedrock. J Environ Sci Heal A 47(8):1152–1165

    CAS  Google Scholar 

  • Machado MD, Soares EV, Soares HMVM (2010) Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. J Hazard Mater 180(1–3):347–353

    CAS  Google Scholar 

  • Malaviya P, Singh A (2011) Physiochemical technologies for remediation of chromium-containing waters and wastewaters. Crit Rev Environ Sci Technol 41(12):1111–1172

    CAS  Google Scholar 

  • Mane PC, Bhosle AB (2012) Bioremoval of some metals by living Algae Spirogyra sp. and Spirullina sp. from aqueous solution. Int J Environ Res 6(2):571–576

    CAS  Google Scholar 

  • Mangunwardoyo W, Sudjarwo T, Patria MP (2013) Bioremediation of effluent wastewater treatment plant Bojongsoang Bandung Indonesia using consortium aquatic plants and animals. Int J Res Rev Appl Sci 14(1):150–160

    CAS  Google Scholar 

  • Mani D, Sharma B, Kumar C (2007) Phytoaccumulation, interaction, toxicity and remediation of cadmium from Helianthus annuus L. Bull Envion Contam Toxicol 79(1):71–79

    CAS  Google Scholar 

  • Mani D, Sharma B, Kumar C, Balak S (2012a) Depth-wise distribution, mobility and naturally occurring glutathione based phytoaccumulation of cadmium and zinc in sewage-irrigated soil profile. Int J Environ Sci Technol. doi:10.1007/s13762-012-0121-z

    Google Scholar 

  • Mani D, Sharma B, Kumar C, Pathak N, Balak S (2012b) Phytoremediation potential of Helianthus annuus L. in sewage-irrigated Indo-Gangetic alluvial soils. Int J Phytoremediation 14:235–246

    CAS  Google Scholar 

  • Mani D, Sharma B, Kumar C, Balak S (2012c) Cadmium and lead bioaccumulation during growth stages alters sugar and vitamin C content in dietary vegetables. Proc Natl Acad Sci India Sect B Biol Sci 82(4):477–488

    CAS  Google Scholar 

  • Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, Oxford

    Google Scholar 

  • Mapanda F, Mangwayana EN, Nyanangara J, Giller KE (2005) The effect of long-term irrigation using wastewater on the heavy metal contents of soils under vegetables in Harare, Zimbabwe. Agr Ecosyst Environ 107:151–165

    CAS  Google Scholar 

  • Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39(8):622–654

    CAS  Google Scholar 

  • Mclean RI, Abbe GR (2008) Characteristics of Crassostrea ariakensis (Fujita 1913) and Crassostrea virginica (Gmelin 1791) in the discharge area of a nuclear power plant in central Chesapeake Bay. J Shellfish Res 27(3):517–523

    Google Scholar 

  • Meharg AA, Williams PN, Adomako E, Lawgali YY, Deacon D, Villada A (2009) Geographical variation in total and inorganic as content of polished (white) rice. Environ Sci Technol 43:1612–1617

    CAS  Google Scholar 

  • Memon AR, Schroder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175

    CAS  Google Scholar 

  • Mench M, Schwitzgnibel JP, Schroeder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16:876–900

    CAS  Google Scholar 

  • MoEF (2011) A state-of-the-art report on bioremediation, its applications to contaminated sites in India. Ministry of Environment & Forests, Paryavaran Bhawan, New Delhi Web http://moef.nic.in/downloads/public-information/BioremediationBook.pdf. Accessed 26 March 2012

  • Mohanty M, Pattnaik MM, Mishra AK, Patra HK (2012) Bio-concentration of chromium- an in situ phytoremediation study at South Kaliapani chromite mining area of Orissa, India. Environ Monit Assess 184:1015–1024

    CAS  Google Scholar 

  • Mukherjee AB, Zevenhoven R, Bhattacharya P, Sajwan KS, Kikuch R (2008) Mercury flow via coal and coal utilization by-products: a global perspective. Resour Conserv Recy 52(4):571–591

    Google Scholar 

  • Mukhopadhyay S, Maiti SK (2010) Phytoremediation of metal mine waste. Appl Ecol Environ Res 8:207–222

    Google Scholar 

  • Najafi M, Yousefi Y, Rafati AA (2012) Synthesis, characterization and adsorption studies of several heavy metal ions on amino-functionalized silica nano hollow sphere and silica gel. Separ Purif Technol 85(2):193–205

    CAS  Google Scholar 

  • Nakbanpote W, Paitlertumpai N, Sukadeetad K, Meesungeon O, Noisanguan W (2010) Advances in phytoremediation research: a case study of Gynura pseudochina (L) DC. In: Fuerstner I (ed) Advanced knowledge application in practice. Sciyo, Croatia, pp 353–378

    Google Scholar 

  • Norstrom A, Larsdotter K, Gumaelius L, Jansen JLC, Dalhammar G (2004) A small scale hydroponics wastewater treatment system under Swedish conditions. Water Sci Technol 48(11–12):161–167

    Google Scholar 

  • Nouri J, Mahvi AH, Jahed GR, Babaei AA (2008) Regional distribution pattern of groundwater heavy metals resulting from agricultural activities. Environ Geo 55(6):1337–1343

    CAS  Google Scholar 

  • Nouri J, Khorasani N, Lorestani B, Karami M, Hassani AH, Yousefi N (2009) Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environ Earth Sci 59(2):315–323

    CAS  Google Scholar 

  • Nowack B, Schulin R, Robinson BH (2006) Critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol 40(17):5225–5232

    CAS  Google Scholar 

  • Pagnanelli F, Viggi CC, Cibati A, Uccelletti D, Toroa L, Palleschi C (2012) Biotreatment of Cr(VI) contaminated waters by sulphate reducing bacteria fed with ethanol. J Hazard Mater 199–200:186–192

    Google Scholar 

  • Paliwal V, Puranik S, Purohit HJ (2012) Integrated perspective of effective bioremediation. Appl Biochem Biotechnol 166:903–924

    CAS  Google Scholar 

  • Pan XL (2009) Microbially induced carbonate precipitation as a promising way to in situ immobilize heavy metals in groundwater and sediment. Res J Chem Environ 13:3–4

    Google Scholar 

  • Pierre V, Terry M, Madeleine SG (2011) Compartmentation of metals in foliage of Populus tremula grown on soil with mixed contamination. I. From the tree crown to leaf cell level. Environ Pollut 159:324–336

    Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    CAS  Google Scholar 

  • Pilon-Smits EAH, LeDuc DL (2009) Phytoremediation of selenium using transgenic plants. Curr Opin Biotechnol 20:207–212

    CAS  Google Scholar 

  • Poirier I, Hammann P, Kuhn L, Bertrand M (2013) Strategies developed by the marine bacterium Pseudomonas fluorescens BA3SM1 to resist metals: a proteome analysis. Aquat Toxicol 128–129:215–232

    Google Scholar 

  • Prado C, Rodríguez-Montelongo L, González JA, Pagano EA, Hilal M, Prado FE (2010) Uptake of chromium by Salvinia minima: effect on plant growth, leaf respiration and carbohydrate metabolism. J Hazard Mater 177(1–3):546–553

    CAS  Google Scholar 

  • Prasad MNV (2007) Phytoremediation in India. In: Willey N (ed) Phytoremediation- methods and reviews. Humana Press, Totowa, New Jersey, pp 435–454

    Google Scholar 

  • Prasad MNV, Freitas H (2003) Metal hyperaccumulation in plants-Biodiversity prospecting for phytoremediation technology. Electron J Biotechn 6:275–321

    Google Scholar 

  • Purakayastha TJ, Chhonker PK (2001) Influence of vesicular arbuscular mycorrhizae fungi (Glomus etunicatum L) on mobilization of zinc in wetland rice (Oryza sativa L). Biol Fertility Soils 33:323–327

    CAS  Google Scholar 

  • Rai PK (2009) Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Crit Rev Environ Sci Technol 39(9):697–753

    CAS  Google Scholar 

  • Rajaganapathy V, Xavier F, Sreekumar D, Mandal PK (2011) Heavy metal contamination in soil, water and fodder and their presence in livestock and products: a review. J Environ Sci Technol 4:234–249

    CAS  Google Scholar 

  • Ramasamy RK, Congeevaram S, Thamaraiselvi K (2011) Evaluation of isolated fungal strain from e-waste recycling facility for effective sorption of toxic heavy metals Pb(II) ions and fungal protein molecular characterization-a Mycoremediation approach. Asian J Exp Biol 2(2):342–347

    Google Scholar 

  • Ramos JL, Marques S, Dillewijn PV, Espinosa-Urgel M, Segura A, Duque E et al (2011) Laboratory research aimed at closing the gaps in microbial bioremediation. Trends Biotechnol 29(12):641–647

    CAS  Google Scholar 

  • Rasmussen LD, Sorenson SJ, Turner RR, Barkay T (2000) Application of a merlux biosensor for estimating bioavailable mercury in soil. Soil Biol Biochem 32(5):639–649

    CAS  Google Scholar 

  • Ravenscroft P, Brammer H, Richards K (2009) Arsenic pollution: a global synthesis. Royal geographical society, 1st edn. Willey Blackwell, New York

    Google Scholar 

  • Rayu S, Karpouzas DG, Singh BK (2012) Emerging technologies in bioremediation: constraints and opportunities. Biodegradation 23:917–926

    CAS  Google Scholar 

  • Robinson BH, Green SR, Chancerel B, Mills TM, Clothier BE (2007) Popular for the phytomanagement of boron contaminated sites. Environ Pollut 150:225–233

    CAS  Google Scholar 

  • Robinson BH, Banuelos G, Conesa HM, Evangelou MWH, Schulin R (2009) The phytomanagement of trace elements in soil. Crit Rev Plant Sci 28(4):240–266

    CAS  Google Scholar 

  • Robinson C, Brömssen MV, Bhattacharya P, Häller S, Bivén A, Hossain M, Jacks G, Ahmed KM, Hasan MA, Thunvik R (2011) Dynamics of arsenic adsorption in the targeted arsenic-safe aquifers in Matlab, south-eastern Bangladesh: insight from experimental studies. Appl Geochem 26:624–635

    CAS  Google Scholar 

  • Ruiz ON, Alvarez D, Gonzalez-Ruiz G, Torres C (2011) Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase. BMC Biotechnol 11:82–89

    CAS  Google Scholar 

  • Sarma H (2011) Metal hyperaccumulation in plants: a review focussing on phytoremediation technology. J Environ Sci Technol 4(2):118–138

    CAS  Google Scholar 

  • Saunders RJ, Paul NA, Hu Y, de Nys R (2012) Sustainable sources of biomass for bioremediation of heavy metals in wastewater derived from coal-fired power generation. PLoS ONE. doi:10.1371/journal.pone.0036470

    Google Scholar 

  • Say R, Yimaz N, Denizli A (2003) Removal of heavy metal ions using the fungus Penicillium canescens. Adsorpt Sci Technol 21:643–650

    CAS  Google Scholar 

  • Schiewer S, Patil SB (2008) Pectin-rich fruit wastes as biosorbents for heavy metal removal: equilibrium and Kinetics. Bioresour Technol 99(6):1896–1903

    CAS  Google Scholar 

  • Selvam A, Wong JW (2008) Phytochelatin synthesis and cadmium uptake of Brassica napus. Environ Technol 29:765–773

    CAS  Google Scholar 

  • Seth CS, Chaturvedi PK, Misra V (2007) Toxic effect of arsenic and cadmium alone and in combination on Giant duckweed (Spirodela polyrrhiza L) in response to its accumulation. Environ Toxicol 22:539–549

    CAS  Google Scholar 

  • Seth CS, Chaturvedi PK, Misra V (2008) The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Ecotoxicol Environ Saf 71:76–85

    CAS  Google Scholar 

  • Seviour RJ, Mino T, Onuki M (2003) The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol Rev 27(1):99–127

    CAS  Google Scholar 

  • Sharma RK, Agrawal M, Marshall F (2006) Heavy metal contamination in vegetables grown in wastewater irrigated areas of Varanasi. Bull Environ Contam Toxicol 77:312–318

    CAS  Google Scholar 

  • Shirdam R, Khanafari A, Tabatabaee A (2006) Cadmium, nickel and vanadium accumulation by three strains of marine bacteria. Iran J Biotechnol 4(3):180–187

    CAS  Google Scholar 

  • Siezen RJ, Galardini M (2008) Genomics of biological wastewater treatment. Microbial Biotech 1(5):333–340

    CAS  Google Scholar 

  • Singh J, Kalamdhad AS (2013) Assessment of bioavailability and leachability of heavy metals during rotary drum composting of green waste (Water hyacinth). Ecol Eng 52:59–69

    Google Scholar 

  • Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP (2011) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480:1–9

    CAS  Google Scholar 

  • Singh RS, Tripathi N, Chaulya SK (2012) Ecological study of revegetated coal mine spoil of an India dry tropical ecosystem along an age gradient. Biodegradation 23:837–849

    CAS  Google Scholar 

  • Singhal RK, Joshi S, Tirumalesh K, Gurg RP (2004) Reduction of uranium concentration in well water by Chlorella (Chlorella pyrendoidosa) a fresh water algae immobilized in calcium alginate. J Radioanal Nuclear Chem 261:73–78

    CAS  Google Scholar 

  • Sivakumar D (2012) Experimental and analytical model studies on leachate volume computation from solid-waste. Int J Environ Sci Technol. doi:10.1007/s13762-012-0083-1

    Google Scholar 

  • Stamets P (2005) Mycelium running: how mushroom can help save the world. Ten Speed Press, Crown Publishing Group, New York

    Google Scholar 

  • Stewart BD, Girardot C, Spycher N, Sani RK, Peyton BM (2013) Influence of chelating agents on biogenic uraninite reoxidation by Fe(III) hydroxides. Environ Sci Technol 47(1):364–371

    CAS  Google Scholar 

  • Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metals ions from aqueous solutions: a review. Bioresour Technol 99(14):6017–6027

    CAS  Google Scholar 

  • Tang CY, Criddle QS, Fu CS, Leckie JO (2007) Effect of flux (Transmembrane pressure) and membranes properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. Environ Sci Technol 41:2008–2014

    CAS  Google Scholar 

  • Taştan BE, Ertuğrul S, Dönmez G (2010) Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor. Bioresour Technol 101(3):870–876

    Google Scholar 

  • Thapa B, Kumar AKC, Ghimire A (2012) A review on bioremediation of petroleum hydrocarbon contaminants in soil. Kathmandu Univ J Sci Eng Tech 8(1):164–170

    Google Scholar 

  • Tits J, Fujita T, Tsukamoto M, Wieland E (2008) Uranium (VI) uptake by synthetic calcium silicate hydrates. Mater Res Soc Symp P 1107:467–474

    Google Scholar 

  • Tiwari S, Kumari B, Singh SN (2008) Evaluation of metal mobility/immobility in fly ash induced by bacterial strains isolated from rhizospheric Zone of Typha latifolia growing on fly ash dumps. Bioresour Technol 99:1305–1310

    CAS  Google Scholar 

  • Tokuyama H, Hisaeda J, Nii S, Sakohara S (2010) Removal of heavy metal ions and humic acid from aqueous solutions by co-adsorption onto thermosensitive polymers. Separ Purif Technol 71(1):83–88

    CAS  Google Scholar 

  • Tripathi RD, Dwivedi S, Shukla MK, Mishra S, Srivastava S, Singh R, Rai UN, Gupta DK (2008) Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice (Oryza sativa L) plants. Chemosphere 70:1919–1929

    CAS  Google Scholar 

  • Tripathi N, Singh RS, Chaulya SK (2012) Dump stability and soil fertility of a coal mine spoil in India dry tropical environment: a long-term study. Environ Manage 50(4):695–706

    Google Scholar 

  • Tully BJ, Nelson WC, Heidelbert JF (2012) Metagenomic analysis of a complex marine planktonic thaumarchael community from the Gulf of Maine. Environ Microbiol 14(1):254–267

    CAS  Google Scholar 

  • Tyagi M, Fonseca MMRD, Carvalho CCCRD (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241

    CAS  Google Scholar 

  • USEPA (2004) Cleaning up the nation’s waste sites: markets and technology trends. US Environmental Protection Agency, Washington

    Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J et al (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    CAS  Google Scholar 

  • Vesely T, Tlustos P, Szakova J (2012) Organic acid enhanced soil risk element (Cd, Pb and Zn) leaching and secondary bioconcentration in water lettuce (Pistia stratiotes L) in the rhizofiltration process. Int J Phytoremediat 14(4):335–349

    CAS  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73(7):1163–1172

    CAS  Google Scholar 

  • Viggi CC, Pagnanelli F, Cibati A, Uccelletti D, Palleschi C, Toro L (2010) Biotreatment and bioassessment of heavy metal removal by sulphate reducing bacteria in fixed bed reactors. Water Res 44(1):151–158

    Google Scholar 

  • Vrionis HA, Anderson RT, Ortiz-Bernad I, O’Neill KR, Resch CT, Peacock AD, Dayvault R, White DC, Long PE, Lovley DR (2005) Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site. Appl Environ Microbiol 71:6308–6318

    CAS  Google Scholar 

  • Vullo DL, Ceretti HM, Hughes EA, Ramyrez S, Zalts A (2008) Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E. Bioresour Technol 99:5574–5581

    CAS  Google Scholar 

  • Wang GQ, Huang YZ, Xiao BY, Qian XC, Yao H, Hu Y, Gu YL, Zhang C, Liu KT (1997) Toxicity from water containing arsenic and fluoride in Xinjiang. Fluoride 30:81–84

    CAS  Google Scholar 

  • Wang F, Lin X, Yin R (2005) Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant Soil 269:225–232

    CAS  Google Scholar 

  • Wang S, Zhang D, Pan X (2012) Effects of arsenic on growth and photosystem II (PSII) activity of Microcystis aeruginosa. Ecotoxicol Environ Saf 84:104–111

    CAS  Google Scholar 

  • Wang Y, Sevinc PC, Belchik SM, Fredrickson J, Shi L, Lu HP (2013) Singly-cell imaging and spectroscopic analyses of Cr(VI) reduction on the surface of bacterial cells. Langmuir 29(3):950–956

    CAS  Google Scholar 

  • Wen YM, Lin HY, Wang QP, Chen ZL (2010) Bioleaching of heavy metals from sewage sludge using acidithiobacilus thiooxidans. 2nd international symposium on aqua science, water resource and low carbon energy, Sanya, December 7-10, 2009, AIP Conference Proceedings 1251:189–192

  • Wojas S, Hennig J, Plaza S, Geisler M, Siemianowski O et al (2009) Ectopic expression of Arabidopsis ABC transporter MRP7 modifies cadmium root-to-shoot transport and accumulation. Environ Pollut 157(10):2781–2789

    CAS  Google Scholar 

  • Wu HB, Tang SR (2009) Using CO2 to increase the biomass of a Sorghum vulgare × Sorghum vugare var. Sudanese hybrid and Trifolium pretense L. and to trigger hyperaccumulation of cesium. J Hazard Mater 170:861–870

    CAS  Google Scholar 

  • Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174(1–3):1–8

    CAS  Google Scholar 

  • Wu L, Li Z, Akahane I, Liu L et al (2012) Effects of organic amendments on Cd, Zn and Cu bioavailability in soil with repeated phytoremediation by Sedum plumbizincicola. Int J Phytoremediat 14(10):1024–1038

    CAS  Google Scholar 

  • Wuana RA, Okieimen FE, Imborvungu JA (2010) Removal of heavy metals from a contaminated soil using organic chelating acids. Int J Environ Sci Tech 7(3):485–496

    CAS  Google Scholar 

  • Xu H, Chen Y, Huang H, Liu Y, Yang Z (2012) Removal of lead(II) and cadmium (II) from aqueous solutions using spent Agaricus bisporus. Can J Chem Eng (in press)

  • Yan DYS, Lo IMC (2012) Pyrophosphate coupling with chelant-enhanced soil flushing of field contaminated soils for heavy metal extraction. J Hazard Mater 199–200:51–57

    Google Scholar 

  • Yin X, Yao C, Song J, Li Z, Zhang C et al (2009) Mercury contamination in vicinity of secondary copper smelters in Fuyang, Zhejiang Province, China; levels and contamination in top soils. Environ Pollut 157(6):1787–1793

    CAS  Google Scholar 

  • Yin XX, Wang LH, Bai R, Huang H, Sun GX (2012) Accumulation and transformation of arsenic in the blue-green alga Synechocysis sp. PCC6803. Water Air Soil Pollut 223(3):1183–1190

    CAS  Google Scholar 

  • Ylivainio K (2010) Effects of iron (III) chelates on the solubility of heavy metals in calcareous soils. Environ Pollut 158:3194–3200

    CAS  Google Scholar 

  • Yuan X, Huang H, Zeng G, Li H, Wang J, Zhou C, Zhu H, Pei X, Liu Z, Liu Z (2011) Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge. Bioresour Technol 102(5):4104–4110

    CAS  Google Scholar 

  • Zarei M, Hempel S, Wubet T, Schafer T, Savaghebi G et al (2010) Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environ Pollut 158:2757–2765

    CAS  Google Scholar 

  • Zeftawy MAME, Mulligan CN (2011) Use of rhamnolipid to remove heavy metals from wastewater by micellar-enhanced ultrafiltration (MEUF). Separ Purif Technol 77(1):120–127

    Google Scholar 

Download references

Acknowledgments

The compilation of this review article was supported by The Sheila Dhar Memorial Scholarship Fund, University of Allahabad, Allahabad, India; DNA Club Project of The National Academy of Sciences, India (NASI) (funded by Ministry of Science & Technology, Department of Biotechnology, Government of India vide order No. BT/PR9045/NDB/53/21/2007); and the Indian Farmer Fertilizer Cooperative (IFFCO) Ltd., Phulpur Unit, Ghiya Nagar, Allahabad. The corresponding author is grateful to Prof. Krishna Misra, General Secretary, NASI, and Dr. Niraj Kumar, PI, DNA Club Project and Executive Secretary NASI, for guiding him regularly to attend in the scientific deliberations, in Science Communication Programs/Scientific Research Paper Writings/Workshops/Seminars/Symposia, organized at national level and especially in the Annual Sessions of the Academy. The authors gratefully acknowledge the esteemed reviewers/editors for their critical assessment and valuable suggestions. However, opinions in the paper do not constitute an approval by the funding agencies but only reflect the personal views of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chitranjan Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mani, D., Kumar, C. Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int. J. Environ. Sci. Technol. 11, 843–872 (2014). https://doi.org/10.1007/s13762-013-0299-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-013-0299-8

Keywords

Navigation