Skip to main content
Log in

The dominant acetate degradation pathway/methanogenic composition in full-scale anaerobic digesters operating under different ammonia levels

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Ammonia is a major environmental factor influencing biomethanation in full-scale anaerobic digesters. In this study, the effect of different ammonia levels on methanogenic pathways and methanogenic community composition of full-scale biogas plants was investigated. Eight full-scale digesters operating under different ammonia levels were sampled, and the residual biogas production was followed in fed-batch reactors. Acetate, labelled in the methyl group, was used to determine the methanogenic pathway by following the 14CH4 and 14CO2 production. Fluorescence in situ hybridisation was used to determine the methanogenic communities’ composition. Results obtained clearly demonstrated that syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis was the dominant pathway in all digesters with high ammonia levels (2.8–4.57 g NH4 +-N L−1), while acetoclastic methanogenic pathway dominated at low ammonia (<1.21 g NH4 +-N L−1). Thermophilic Methanomicrobiales spp. and mesophilic Methanobacteriales spp. were the most abundant methanogens at free ammonia concentrations above 0.44 g NH3-N L−1 and total ammonia concentrations above 2.8 g NH4 +-N L−1, respectively. Meanwhile, in anaerobic digesters with low ammonia (<1.21 g NH4 +-N L−1) and free ammonia (<0.07 g NH3-N L−1) levels, mesophilic and thermophilic Methanosaetaceae spp. were the most abundant methanogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahring B (1995) Methanogenesis in thermophilic biogas reactors. Antonie van Leeuwenhoek Int J G 67:91–102

    Article  CAS  Google Scholar 

  • Angelidaki I, Ellegaard L, Ahring BK (1993) A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: focusing on ammonia inhibition. Biotechnol Bioeng 42:159–166

    Article  CAS  Google Scholar 

  • Angelidaki I, Boe K, Ellegaard L (2005) Effect of operating conditions and reactor configuration on efficiency of full-scale biogas plants. Water Sci Technol 52:189–194

    CAS  Google Scholar 

  • Angelidaki I, Karakashev D, Batstone DJ, Plugge CM, Stams AJM (2011) Biomethanation and its potential. In: Amy CR, Stephen WR (eds) Methods in enzymology, vol 494. Academic, New York, pp 327–351

    Google Scholar 

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Banu JR, Kaliappan S, Yeom IT (2007) Treatment of domestic wastewater using upflow anaerobic sludge blanket reactor. Int J Environ Sci Technol 4:363–370

    Article  CAS  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    Article  CAS  Google Scholar 

  • de Baere LA, Devocht M, Van Assche P, Verstraete W (1984) Influence of high NaCl and NH4Cl salt levels on methanogenic associations. Water Res 18:543–548

    Article  Google Scholar 

  • Demirel B, Scherer P (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7:173–190

    Article  CAS  Google Scholar 

  • Fotidis IA, Karakashev D, Angelidaki I (2013a) Bioaugmentation with an acetate-oxidising consortium as a tool to tackle ammonia inhibition of anaerobic digestion. Bioresour Technol 146:57–62

    Google Scholar 

  • Fotidis IA, Karakashev D, Kotsopoulos TA, Martzopoulos GG, Angelidaki I (2013b) Effect of ammonium and acetate on methanogenic pathway and methanogenic community composition. FEMS Microbiol Ecol 83:38–48

    Article  CAS  Google Scholar 

  • Gong W-J, Liang H, Li W-Z, Wang Z–Z (2011) Selection and evaluation of biofilm carrier in anaerobic digestion treatment of cattle manure. Energy 36:3572–3578

    Article  CAS  Google Scholar 

  • Gray N, Sherry A, Larter S, Erdmann M, Leyris J, Liengen T, Beeder J, Head I (2009) Biogenic methane production in formation waters from a large gas field in the North Sea. Extremophiles 13:511–519

    Article  CAS  Google Scholar 

  • Hafner SD, Bisogni JJ, Jewell WJ (2006) Measurement of un-ionized ammonia in complex mixtures. Environ Sci Technol 40:1597–1602

    Article  CAS  Google Scholar 

  • Hansen KH, Angelidaki I, Ahring BK (1998) Anaerobic digestion of swine manure: inhibition by ammonia. Water Res 32:5–12

    Article  CAS  Google Scholar 

  • Hao L-P, Lü F, Li L, Shao L-M, He P-J (2012) Shift of pathways during initiation of thermophilic methanogenesis at different initial pH. Bioresour Technol 126:418–424

    Article  CAS  Google Scholar 

  • Hejnfelt A, Angelidaki I (2009) Anaerobic digestion of slaughterhouse by-products. Biomass Bioenerg 33:1046–1054

    Article  CAS  Google Scholar 

  • Hugenholtz P (2002) Design and evaluation of 16S rRNA-targeted oligonucleotide probes for fluorescence in situ hybridization. In: Aquino de Muro M, Rapley R (eds) Gene probes: principles and protocols. Humana Press, Totowa, pp 29–42

    Google Scholar 

  • Jarrell KF, Saulnier M, Ley A (1987) Inhibition of methanogenesis in pure cultures by ammonia, fatty acids, and heavy metals, and protection against heavy metal toxicity by sewage sludge. Can J Microbiol 33:551–554

    Article  CAS  Google Scholar 

  • Karakashev D, Batstone DJ, Angelidaki I (2005) Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl Environ Microbiol 71:331–338

    Article  CAS  Google Scholar 

  • Karakashev D, Batstone DJ, Trably E, Angelidaki I (2006) Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of methanosaetaceae. Appl Environ Microbiol 72:5138–5141

    Article  CAS  Google Scholar 

  • Kayhanian M (1994) Performance of a high-solids anaerobic digestion process under various ammonia concentrations. J Chem Technol Biotechnol 59:349–352

    Article  CAS  Google Scholar 

  • Koster IW, Koomen E (1988) Ammonia inhibition of the maximum growth rate (μm) of hydrogenotrophic methanogens at various pH-levels and temperatures. Appl Microbiol Biotechnol 28:500–505

    Article  CAS  Google Scholar 

  • Kotsopoulos TA, Fotidis IA, Tsolakis N, Martzopoulos GG (2009) Biohydrogen production from pig slurry in a CSTR reactor system with mixed cultures under hyper-thermophilic temperature (70°C). Biomass Bioenerg 33:1168–1174

    Article  CAS  Google Scholar 

  • Kougias PG, Fotidis IA, Zaganas ID, Kotsopoulos TA, Martzopoulos GG (2013) Zeolite and swine inoculum effect on poultry manure biomethanation. Int Agrophys 27:169–173

    Article  Google Scholar 

  • Lu F, Hao L, Guan D, Qi Y, Shao L, He P (2013) Synergetic stress of acids and ammonium on the shift in the methanogenic pathways during thermophilic anaerobic digestion of organics. Water Res 47:2297–2306

    Article  CAS  Google Scholar 

  • Minale M, Worku T (2013) Anaerobic co-digestion of sanitary wastewater and kitchen solid waste for biogas and fertilizer production under ambient temperature: waste generated from condominium house. Int J Environ Sci Technol. doi: 10.1007/s13762-013-0255-7

  • Nakashimada Y, Ohshima Y, Minami H, Yabu H, Namba Y, Nishio N (2008) Ammonia-methane two-stage anaerobic digestion of dehydrated waste-activated sludge. Appl Microbiol Biotechnol 79:1061–1069

    Article  CAS  Google Scholar 

  • Nielsen HB, Angelidaki I (2008a) Codigestion of manure and industrial organic waste at centralized biogas plants: process imbalances and limitations. Water Sci Technol 58:1521–1528

    Article  CAS  Google Scholar 

  • Nielsen HB, Angelidaki I (2008b) Strategies for optimizing recovery of the biogas process following ammonia inhibition. Bioresour Technol 99:7995–8001

    Article  CAS  Google Scholar 

  • Rajagopal R, Massé DI, Singh G (2013) A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour Technol 0. (in press) doi:10.1016/j.biortech.2013.06.030

  • Raskin L, Stromley JM, Rittmann BE, Stahl DA (1994) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240

    Google Scholar 

  • Sarmiento FB, Leigh JA, Whitman WB (2011) Genetic systems for hydrogenotrophic methanogens. In: Amy CR, Stephen WR (eds) Methods in enzymology, vol 494. Academic, New York, pp 43–73. doi:10.1016/B978-0-12-385112-3.00003-2

    Google Scholar 

  • Schauer-Gimenez AE, Zitomer DH, Maki JS, Struble CA (2010) Bioaugmentation for improved recovery of anaerobic digesters after toxicant exposure. Water Res 44:3555–3564

    Article  CAS  Google Scholar 

  • Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H (1999) Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl Environ Microbiol 65:1280–1288

    Google Scholar 

  • Shima S, Hérault DA, Berkessel A, Thauer RK (1998) Activation and thermostabilization effects of cyclic 2,3-diphosphoglycerate on enzymes from the hyperthermophilic Methanopyrus kandleri. Arch Microbiol 170:469–472

    Article  CAS  Google Scholar 

  • Stahl DA, Amann R (1991) Development and application of nucleic acid probes. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, United Kingdom, pp 205–248

  • Stams AJM, De Bok FAM, Plugge CM, Van Eekert MHA, Dolfing J, Schraa G (2006) Exocellular electron transfer in anaerobic microbial communities. Environ Microbiol 8:371–382

    Article  CAS  Google Scholar 

  • Tabatabaei M, Rahim RA, Abdullah N, Wright A-DG, Shirai Y, Sakai K, Sulaiman A, Hassan MA (2010) Importance of the methanogenic archaea populations in anaerobic wastewater treatments. Process Biochem 45:1214–1225

    Article  CAS  Google Scholar 

  • Tumbula DL, Whitman WB (1999) Genetics of Methanococcus: possibilities for functional genomics in Archaea. Mol Microbiol 33:1–7

    Article  CAS  Google Scholar 

  • Westerholm M, Dolfing J, Sherry A, Gray ND, Head IM, Schnürer A (2011) Quantification of syntrophic acetate-oxidizing microbial communities in biogas processes. Environ Microbiol Rep 3:500–505

    Article  CAS  Google Scholar 

  • Yenigün O, Demirel B (2013) Ammonia inhibition in anaerobic digestion: a review. Process Biochem 48:901–911

    Article  Google Scholar 

Download references

Acknowledgments

We thank Hector Garcia for technical assistance with the experiments and Mike Podevin for editing support. This work was supported by Energinet.dk under the project framework ForskEL “Innovative process for digesting high ammonia wastes” (programme no. 2010-10537) and by the Bioref-Øresund project under EU INTERREG IVA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Angelidaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fotidis, I.A., Karakashev, D. & Angelidaki, I. The dominant acetate degradation pathway/methanogenic composition in full-scale anaerobic digesters operating under different ammonia levels. Int. J. Environ. Sci. Technol. 11, 2087–2094 (2014). https://doi.org/10.1007/s13762-013-0407-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-013-0407-9

Keywords

Navigation