Skip to main content
Log in

Magnetically recoverable iron oxide–hydroxyapatite nanocomposites for lead removal

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Magnetite–hydroxyapatite nanocomposites were prepared by in situ precipitation of the calcium phosphate phase in an iron oxide colloidal suspension. Homogeneous magnetic powders were obtained with iron oxide content up to 50 wt%, without perturbation of the magnetite structure nor formation of additional calcium phosphates. The surface area of the composite powder was significantly increased after incorporation of magnetite due to the better apatite particle dispersion. This results in an increased available reactive surface, favoring lead sorption and hydroxypyromorphite precipitation, both leading to an enhanced lead removal capacity of the composite materials. The magnetic properties of magnetite nanocrystals were preserved upon association with hydroxyapatite. Full recovery of the composite powder after lead removal could be achieved using a simple magnet at a relatively low iron oxide content (20 wt%). This indicates a strong interaction between hydroxyapatite and magnetite particles within the composite powder. The procedure is simple, easily scalable and involves only environmental friendly materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdel-Ghani NT, Hefny M, El-Chaghaby GAF (2007) Removal of lead from aqueous solution using low cost abundantly available adsorbents. Int J Environ Sci Tech 4(1):67–74

    Article  CAS  Google Scholar 

  • Achelhi K, Masse S, Laurent G, Roux C, Laghzizil A, Saoiabi A, Coradin T (2011) Ultrasound-assisted synthesis of mesoporous zirconia-hydroxyapatite nanocomposites and their dual surface affinity for Cr3+/Cr2O7 2− ions. Langmuir 27(24):15176–15184

    Article  CAS  Google Scholar 

  • Ansar EB, Ajeesh M, Yokogawa Y, Wunderlich W, Varma V (2012) Synthesis and characterization of iron oxide embedded hydroxyapatite bioceramics. J Am Ceram Soc 95(9):2695–2699

    Article  CAS  Google Scholar 

  • Bahdod A, El Asri S, Saoiabi A, Coradin T, Laghzizil A (2009) Adsorption of phenol from an aqueous solution by selected apatite adsorbents: kinetic process and impact of the surface properties. Water Res 43(2):313–318

    Article  CAS  Google Scholar 

  • Baillez S, Nzihou A, Bernache-Assolant D, Champion E, Sharrock P (2007) Removal of aqueous lead ions by hydroxyapatite: equilibria and kinetic processes. J Hazard Mater 139(3):443–446

    Article  Google Scholar 

  • Benjamin MM, Sletten RS, Bailey RP, Bennett T (1996) Sorption and filtration of metals using iron-oxide-coated sand. Water Res 30(11):2609–2620

    Article  CAS  Google Scholar 

  • Booker NA, Keir D, Priestley A, Rithchie CD, Sudarmana DL, Woods MA (1991) Sewage clarification with magnetite particles. Water Sci Technol 23(7–9):1703–1712

    CAS  Google Scholar 

  • Bouyarmane H, El Asri S, Rami A, Roux C, Mahly MA, Saoiabi A, Coradin T, Laghzizil A (2010) Pyridine and phenol removal using natural and synthetic apatites as low cost sorbents: influence of porosity and surface interactions. J Hazard Mater 181(1–3):736–741

    Article  CAS  Google Scholar 

  • Cao X, Ma LQ, Rhue DR, Appel CS (2004) Mechanisms of lead, copper, and zinc retention by phosphate rock. Environ Pollut 131(3):435–444

    Article  CAS  Google Scholar 

  • Chatterjee J, Haik Y, Chen CJ (2003) Size dependent magnetic properties of iron oxide nanoparticles. J Magn Magn Mater 257(1):113–118

    Article  CAS  Google Scholar 

  • da Silva OG, da Silva Filho EC, da Fonseca MG, Arakaki LNH, Airoldi C (2006) Hydroxyapatite organofunctionalized with silylating agents to heavy cation removal. J Colloid Interface Sci 302(2):485–491

    Article  Google Scholar 

  • Dong L, Zhu Z, Qiu Y, Zhao J (2010) Removal of lead from aqueous solution by hydroxyapatite/magnetite composite adsorbent. Chem Eng J 165(3):827–834

    Article  CAS  Google Scholar 

  • Dybowska A, Manning DAC, Collins MJ, Wess T, Woodgate S, Valsami-Jones E (2009) An evaluation of the reactivity of synthetic and natural apatites in the presence of aqueous metals. Sci Tot Environ 407(8):2953–2965

    Article  CAS  Google Scholar 

  • El Asri S, Laghzizil A, Coradin T, Saoiabi A, Alaoui A, M’hamedi R (2010) Conversion of natural phosphate rock into mesoporous hydroxyapatite for heavy metals removal from aqueous solution. Colloids Surf A Physicochem Eng Asp 362(1–3):33–38

    Article  Google Scholar 

  • El Hammari L, Merroun H, Coradin T, Cassaignon S, Laghzizil A (2007) Mesoporous hydroxyapatites prepared in ethanol–water media: structure and surface properties. Mater Chem Phys 104(2–3):448–453

    Article  Google Scholar 

  • Goya GF, Berquo TS, Fonseca FC, Morales MP (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 94:3520–3528

    Article  CAS  Google Scholar 

  • Hou CH, Hou SM, Hsueh YS, Lin J, Wu HC, Lin FH (2009) The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy. Biomaterials 30(23–24):3956–3960

    Article  CAS  Google Scholar 

  • Jang SH, Min BG, Jeong YG, Lyoo WS, Lee SC (2008) Removal of lead ions in aqueous solution by hydroxyapatite/polyurethane composite foams. J Hazard Mater 152(3):1285–1292

    Article  CAS  Google Scholar 

  • Lower SK, Maurice PA, Traina SJ, Carlson EH (1998) Aqueous Pb sorption by hydroxylapatite: application of atomic force microscopy to dissolution, nucleation, and growth studies. Am Miner 83:147–158

    CAS  Google Scholar 

  • Ma QY, Traina SJ, Logan TJ, Ryan JA (1993) In-situ lead immobilization by apatite. Environ Sci Technol 27:1803–1810

    Article  CAS  Google Scholar 

  • Mir A, Mallik D, Bhattacharya S, Mahata D, Sinha A, Nayar S (2010) Aqueous ferrofluids as templates for magnetic hydroxyapatite nanocomposites. J Mater Sci Mater Med 21(8):2365–2369

    Article  CAS  Google Scholar 

  • Mori K, Kanai S, Hara T, Mizugaki T, Ebitani K, Jitsukawa K, Kaneda K (2007) Development of ruthenium-hydroxyapatite-encapsulated superparamagnetic γ-Fe2O3 nanocrystallites as an efficient oxidation catalyst by molecular oxygen. Chem Mater 19(6):1249–1256

    Article  CAS  Google Scholar 

  • Morup S, Tronc E (1994) Superparamagnetic relaxation of weakly interacting particles. Phys Rev Lett 72(20):3278–3281

    Article  Google Scholar 

  • Muzquiz-Ramos EM, Cortés-Hernandez DA, Escobedo-Bocardo J (2010) Biomimetic apatite coating on magnetite particles. Mater Lett 64(9):17–19

    Article  Google Scholar 

  • Nzihou A, Sharrock P (2010) Role of phosphate in the remediation and reuse of heavy metal polluted wastes and sites. Waste Biomass Valor 1(1):163–174

    Article  CAS  Google Scholar 

  • Okoye AI, Ejikeme PM, Onukwuli OD (2010) Lead removal from wastewater using fluted pumpkin seed shell activated carbon: adsorption modelling and kinetics. Int J Environ Sci Tech 7(4):793–800

    Article  CAS  Google Scholar 

  • Oliveira LCA, Rios RVRA, Fabris JD, Garg V, Sapag K, Lago RM (2002) Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon 40(12):2177–2183

    Article  CAS  Google Scholar 

  • Oliveira LCA, Rios RVRA, Fabris JD, Garg V, Sapag K, Lago RM (2003) Clay-iron oxide magnetic composites for the adsorption of contaminants in water. Appl Clay Sci 22(4):169–177

    Article  CAS  Google Scholar 

  • Oliveira LCA, Petkowicz DI, Smaniotto A, Pergher SBC (2004) Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water. Water Res 38(17):3699–3704

    Article  CAS  Google Scholar 

  • Roca AG, Niznansky D, Poltierova-Vejpravova J, Bittova B, Gonzalez-Fernandez MA, Serna CJ, Morales MP (2009) Magnetite nanoparticles with no surface spin canting. J Appl Phys 105(11):114309

    Article  Google Scholar 

  • Saka C, Sahin O, Kucuk M (2012) Applications of agricultural and forest waste adsorbents fort he removal of lead(II) from contaminated waters. Int J Environ Sci Tech 9(2):379–394

    Article  CAS  Google Scholar 

  • Saoiabi S, El Asri S, Saoiabi A, Laghzizil A, Ackerman JL, Coradin T (2012) Lead and zinc removal from aqueous solutions by aminotriphosphonate-modified converted natural phosphates. Chem Eng J 211–212:233–239

    Article  Google Scholar 

  • Singh KS, Everett DH, Haul RW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(11):603–619

    Google Scholar 

  • Singh RK, El-Fiqi AM, Patel KD, Kim HW (2012) A novel preparation of magnetic hydroxyapatite nanotubes. Mater Lett 75:130–133

    Article  CAS  Google Scholar 

  • Vergés MA, Costo R, Roca AG, Marco JF, Goya GF, Serna CJ, Morales MP (2008) Uniform and water stable magnetite nanoparticles with diameters around the monodomain–multidomain limit. J Phys D Appl Phys 41(13):134003

    Article  Google Scholar 

  • Wakiya N, Yamasaki M, Adachi T, Inukai A, Sakamoto N, Fu D, Sakurai O, Shinozaki K, Suzuki H (2010) Preparation of hydroxyapatite-ferrite composite particles by ultrasonic spray pyrolysis. Mater Sci Eng, B 173(1–3):195–198

    Article  CAS  Google Scholar 

  • Wang D, Duan X, Zhang J, Yao A, Zhou L, Huang W (2009) Fabrication of superparamagnetic hydroxyapatite with highly ordered three-dimensional pores. J Mater Sci 44(15):4020–4025

    Article  CAS  Google Scholar 

  • Yang Z, Gong X, Zhang C (2010) Recyclable Fe3O4/hydroxyapatite composite nanoparticles for photocatalytic applications. Chem Eng J 165(1):117–121

    Article  CAS  Google Scholar 

  • Yoon S (2011) Determination of the temperature dependence of the magnetic anisotropy constant in magnetite nanoparticles. J Korean Phys Soc 59(5):3069–3073

    Article  CAS  Google Scholar 

Download references

Acknowledgments

H. Yang and L. Li acknowledge funding support from the National Natural Science Foundation of China (Grant No. 51107139). The authors thank P. Le Griel (LCMCP), P. Beaunier (Laboratoire de Réactivité de Surface, UPMC) and D. Montero (Institut des Matériaux de Paris Centre, UPMC) for electron microscopy imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Coradin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13762_2014_514_MOESM1_ESM.pdf

Full sets of SEM-FEG and TEM images; magnetic characterization of HAp; enlarged FC–ZFC and hysteresis curves of Fe3O4 and FeH1 powders; kinetics of lead sorption on HAp (PDF 6826 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Masse, S., Rouelle, M. et al. Magnetically recoverable iron oxide–hydroxyapatite nanocomposites for lead removal. Int. J. Environ. Sci. Technol. 12, 1173–1182 (2015). https://doi.org/10.1007/s13762-014-0514-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0514-2

Keywords

Navigation