Skip to main content
Log in

Heavy metals removal in aqueous environments using bark as a biosorbent

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Tree bark is among the widely available and low-cost sorbents for metal adsorption in aqueous environments. A state-of-the-art review is compiled carrying out a comprehensive literature search on the biosorption of heavy metals in solution onto different bark species, including a characterization of bark structure and chemistry. The results indicate that biosorption has been gaining importance for bark valorization purposes. Promising heavy metal uptake values have already been attained using different bark species. These values are comparable to those obtained with commercial activated carbons. Bark has a cost advantage over activated carbon and can be used without any pretreatment. Thus, bark offers a green alternative to remove heavy metals from industrial waters. A brief survey of the chemical composition and structure of different bark species is presented. Suggestions are made to improve screening of bark species for specific heavy metal ions sorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aharoni C, Ungarish M (1977) Kinetics of activated chemisorption. Part 2. Theoretical models. J Chem Soc, Faraday Trans 73:456–464

    Article  CAS  Google Scholar 

  • Al-Asheh S, Duvnjak Z (1997) Sorption of cadmium and other heavy metals by pine bark. J Hazard Mater 56:35–51

    Article  CAS  Google Scholar 

  • Aoyama M, Tsuda M (2001) Removal of Cr(VI) from aqueous solutions by larch bark. Wood Sci Technol 35:425–434

    Article  CAS  Google Scholar 

  • Aoyama M, Kishino M, Jo TS (2004) Biosorption of Cr(VI)on Japanese cedar bark. Sep Sci Technol 39(5):1149–1162

    Article  CAS  Google Scholar 

  • Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33:2469–2479

    Article  CAS  Google Scholar 

  • Boving TB, Klement J, Rowell R, Xing B (2008) Effectiveness of wood and bark in removing organic and inorganic contaminates from aqueous solution. Mol Cryst Liq Cryst 483(1):339–347

    Article  CAS  Google Scholar 

  • Brás I, Lemos LT, Alves A, Pereira MFR (2004) Application of pine bark as a sorbent for organic pollutants in effluents. Manag Environ Qual 15(5):491–501

    Article  Google Scholar 

  • Chubar N, Carvalho JR, Correia MNJ (2004a) Cork biomass as biosorbent for Cu(II), Zn(II) and Ni(II). Colloid Surf A 230:57–65

    Article  Google Scholar 

  • Chubar N, Carvalho JR, Correia MJN (2004b) Heavy metals biosorption on cork biomass: effect of the pre-treatment. Colloid Surf A 238:51–58

    Article  CAS  Google Scholar 

  • Corder SE (1976) Properties and uses of bark as an energy source. XVI IUFRO World Congress, Oslo

    Google Scholar 

  • Escudero C, Fiol N, Poch J, Villaescusa I (2008a) The kinetics of copper sorption onto yohimbe bark wastes. Int J Environ Pollut 34(1–4):215–230

    Article  CAS  Google Scholar 

  • Escudero C, Gabaldon C, Marzal P, Villaescusa I (2008b) Effect of EDTA on divalent metal adsorption onto grape stalks and exhausted coffee wastes. J Hazard Mat 152:476–485

    Article  CAS  Google Scholar 

  • Escudero C, Poch J, Villaescusa I (2013) Modelling of breakthrough curves of single and binary mixtures of Cu(II), Cd(II), Ni(II) and Pb(II) sorption onto grape stalks waste. Chem Eng J 217:129–138

    Article  CAS  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2011) State of the world’s forests 2011. FAO, Rome

    Google Scholar 

  • Fiol N, Villaescusa I (2009) Determination of sorbent point zero charge: usefulness in adsorption studies. Environ Chem Lett 7:79–84

    Article  CAS  Google Scholar 

  • Fiol N, Villaescusa I, Martinez M, Miralles N, Poch J, Serarols J (2003) Biosorption of Cr(VI) using low cost sorbents. Environ Chem Lett 1:135–139

    Article  CAS  Google Scholar 

  • Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  • Freer J, Baeza J, Maturana H, Palma G, Duran N (1989) Removal and recovery of uranium by modified Pinus radiata D. Don bark. J Chem Technol Biotechnol 46(1):41–48

    Article  CAS  Google Scholar 

  • Gaballah I, Kilbertus G (1998) Recovery of heavy metal ions through decontamination of synthetic solutions and industrial effluents using modified barks. J Geochem Explor 62(1–3):241–286

    Article  CAS  Google Scholar 

  • Ghodbane I, Nouri K, Hamdaoui O, Chiha M (2008) Kinetic and equilibrium study for the sorption of cadmium (II) ions from aqueous phase by eucalyptus bark. J Hazard Mater 152:148–158

    Article  CAS  Google Scholar 

  • Gloaguen V, Morvan H (1997) Removal of heavy metal ions from aqueous solution by modified barks. J Environ Sci Health, Part A 32(4):901–912

    Google Scholar 

  • Gundogdu A, Ozdes D, Duran C, Bulut VN, Soylak M, Senturk HB (2009) Biosorption of Pb(II) ions from aqueous solution by pine bark (Pinus brutia Ten.). Chem Eng J 153:62–69

    Article  CAS  Google Scholar 

  • Hanzlik J, Jehlicka J, Sebek O, Weishauptova Z, Machovic V (2004) Multi-component adsorption of Ag (I), Cd (II) and Cu (II) by natural carbonaceous materials. Water Res 38:2178–2184

    Article  CAS  Google Scholar 

  • Harkin JM, Rowe JW (1971) Bark and its possible uses. Research note. Forest Products Laboratory. http://www.treesearch.fs.fed.us/Pubs/5760. Accessed 30 June 2012

  • Haussard M, Gaballah I, Kanari N, De Donato O, Barres O, Villieras F (2003) Separation of hydrocarbons and lipid from water using treated bark. Water Res 37(2):362–374

    Article  CAS  Google Scholar 

  • Ho YS, Porter JF, McKay G (2002) Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water Air Soil Pollut 141:1–33

    Article  CAS  Google Scholar 

  • Horsfall M, Ogban FE, Akporhonor EE (2006) Recovery of lead and cadmium ions from metal-loaded biomass of wild cocoyam (Caladium bicolor) using acidic, basic and neutral eluent solutions. Electron J Biotechnol 9(2):152–156

    Article  CAS  Google Scholar 

  • Jauberty L, Gloaguen V, Astier C, Krausz P, Delpech V, Berland A, Granger V, Niort I, Royer A, Decossas JL (2011) Bark, a suitable biosorbent for the removal of uranium from waste water-From laboratory to industry. Radioprotection 46(4):443–456

    Article  CAS  Google Scholar 

  • Jové P, Olivella MA, Cano L (2011) Study of the variability in chemical composition of bark layers of Quercus suber L. from different production areas. BioResources 6(2):1806–1815

    Google Scholar 

  • Khokhotva AP (2010) Adsorption of heavy metals by a sorbent based on pine bark. J Water Chem Technol 32(6):336–340

    Article  Google Scholar 

  • Kumar U (2006) Agricultural products and by-products as a low-cost adsorbent for heavy metal removal from water and waste-water: a review. Sci Res Essays 1(2):33–37

    Google Scholar 

  • Li F, Li LY (2003) An equation characterizing multi-heavy-metal sorption onto bentonite, forest soil and spruce bark. Environ Technol 24:1479–1490

    Article  CAS  Google Scholar 

  • López-Mesas M, Navarrete ER, Carrillo F, Palet C (2011) Bioseparation of Pb(II) and Cd (II) from aqueous solution using cork waste biomass. Modelling and optimization of the parameters of the biosorption step. Chem Eng J 174:9–17

    Article  Google Scholar 

  • Marques AV, Pereira H (2013) Lignin monomeric composition of corks from the barks of Betula pendula, Quercus suber and Quercus cerris determined by Py–GC–MS/FID. J Anal Appl Pyrol 100:88–94

    Article  CAS  Google Scholar 

  • Marques AV, Pereira H, Meier D, Faix O (2005) Structural characterization of cork lignin by thioacidolysis and permanganate oxidation. Holzforschung 53(2):167–174

    Google Scholar 

  • Martin-Dupont F, Gloaguen V, Granet R, Guilloton M, Morvan H, Krausz P (2002) Heavy metal adsorption by crude coniferous barks: a modelling study. J Environ Sci Health, Part A 37(6):1063–1073

    Article  Google Scholar 

  • Martin-Dupont F, Gloaguen V, Granet R, Guilloton M, Krausz P (2004) Chemical modifications of Douglas fir bark, a lignocellulosic by-product-enhancement of their lead (II) binding capacities. Sep Sci Technol 39(7):1595–1610

    Article  CAS  Google Scholar 

  • Martin-Dupont F, Gloaguen V, Guilloton M, Granet R, Krausz P (2006) Study of the chemical interaction between the barks and heavy metal cations in the sorption process. J Environ Sci Health, Part A 41(2):149–160

    Article  CAS  Google Scholar 

  • Masri MS, Reuter FW, Friedman M (1974) Binding of metal cations by natural substances. J Appl Polym Sci 18:675–681

    Article  Google Scholar 

  • Matsumoto M, Kawabata D, Takatani T, Yoshida Y, Kondo K (2013) Selective adsorption of oxometallic and gold ions on filter paper containing cedar bark. Solvent Extr Ion Exch. doi:10.1080/07366299.2013.850005

  • Miralles N, Martínez M, Florido A, Casas I, Fiol N, Villaescusa I (2008) Grape stalks waste as low cost biosorbents: an alternative for metal removal from aqueous solutions. Solvent Extr Ion Exch 26:261–270

    Article  CAS  Google Scholar 

  • Miranda I, Gominho J, Mirra I, Pereira H (2012) Chemical characterization of barks from Picea abies and Pinus sylvestris after fractioning into different particle sizes. Ind Crops Prod 36:395–400

    Article  CAS  Google Scholar 

  • Miranda I, Gominho J, Mirra I, Pereira H (2013) Fractioning and chemical characterization of barks of Betula pendula and Eucalyptus globulus. Ind Crops Prod 41:299–305

    Article  CAS  Google Scholar 

  • Naja GM, Volesky B, Murphy V (2009) Biosorption, metals. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology, bioprocess, bioseparation, and cell technology. Wiley, New York

    Google Scholar 

  • Netzahuatl-Muñoz AR, Gullién-Jiménez FM, Chávez-Gómez B, Villegas-Garrido TL, Cristiani-Urbina E (2012) Kinetic study of the effect of pH on hexavalent and trivalent chromium removal from aqueous solution by Cupressus lusitanica bark. Water Air Soil Pollut 223:625–641

    Article  Google Scholar 

  • Nurchi VM, Villaescusa I (2008) Agricultural biomasses as sorbents of some trace metals. Coord Chem Rev 252:1178–1188

    Article  CAS  Google Scholar 

  • Nurchi VM, Villaescusa I (2012) Sorption of toxic metal ions by solid sorbents: a predictive speciation approach based on complex formation constants in aqueous solution. Coord Chem Rev 256:212–221

    Article  CAS  Google Scholar 

  • Nurchi VM, Crisponi G, Villaescusa I (2010) Chemical equilibria in wastewaters during toxic metal ion removal by agricultural biomass. Coord Chem Rev 254:2181–2192

    Article  CAS  Google Scholar 

  • Oh M, Tshabalala M (2007) Pelletized ponderosa pine bark for adsorption of toxic heavy metals from water. BioResources 2(1):66–81

    Google Scholar 

  • Olivella MA, Jové P, Şen A, Pereira H, Villaescusa I, Fiol N (2011) Sorption performance of Quercus cerris cork with polycyclic aromatic hydrocarbons and toxicity testing. BioResources 6(3):3363–3375

    CAS  Google Scholar 

  • Palma G, Freer J, Baeza J (2003) Removal of metal ions by modified Pinus radiata bark and tannins from water solutions. Water Res 37:4974–4980

    Article  CAS  Google Scholar 

  • Park D, Yun YS, Park JM (2010) The past, present, and future trends of biosorption. Biotechnol Bioprocess Eng 15:86–102

    Article  CAS  Google Scholar 

  • Pereira H (2007) Cork: biology, production and uses. Elsevier, Amsterdam

    Google Scholar 

  • Pereira H (2012a) Anatomical studies of barks. I SINBOT. In: International symposium on applied botany. Federal University of Lavras, Lavras, Brasil, 4–6 October

  • Pereira H (2012b) The importance of biomass structure and chemical composition for biorefineries. In: 2012 IUFRO conference. 8–13 July, Lisbon, Portugal

  • Pereira H (2013) Cork chemical variability. BioResources 8:2246–2256

    CAS  Google Scholar 

  • Poch J, Villaescusa I (2012) Orthogonal distance regression: a good alternative to least squares for modelling sorption data. J Chem Eng Data 57:490–499

    Article  CAS  Google Scholar 

  • Psareva TS, Zakutevskyy OI, Chubar NI, Strelko VV, Shaposhinikova TO, Carvalho JR, Correia MJN (2005) Uranium sorption on cork biomass. Colloid Surf A 252:231–236

    Article  CAS  Google Scholar 

  • Pujol D, Bartoli M, Torre F, Villaescusa I, Poch J (2013) Modelling synergistic sorption of Cr(VI), Cu (II) and Ni (II) onto exhausted coffee wastes from binary mixtures Cr(VI)–Cu(II) and Cr(VI)–Ni (II). Chem Eng J 230:396–405

    Article  CAS  Google Scholar 

  • Rowell RM (2006) Removal of metal ions from contaminated water using agricultural residues. In: Ecowood 2006: 2nd international conference on environmentally-compatible forest products. Fernando Pessoa University. Oporto, Portugal, 20–22 September

  • Rowell RM (2012) Handbook of wood chemistry and wood composites. CRC Press, Boca Raton

    Book  Google Scholar 

  • Saka C, Şahin Ö, Küçük MM (2012) Applications on agricultural and forest waste adsorbents for the removal of lead (II) from contaminated waters. IJEST 9(2):379–394

    CAS  Google Scholar 

  • Sarin V, Pant KK (2006) Removal of chromium from industrial waste by using eucalyptus bark. Bioresour Technol 97:15–20

    Article  CAS  Google Scholar 

  • Seki K, Saito N, Aoyama M (1997) Removal of heavy metal ions from solutions by coniferous barks. Wood Sci Technol 31:441–447

    Article  CAS  Google Scholar 

  • Şen A, Miranda I, Santos S, Graça J, Pereira H (2010) The chemical composition of cork and phloem in the rhytidome of Quercus cerris bark. Ind Crops Prod 31:417–422

    Article  Google Scholar 

  • Şen A, Olivella MA, Fiol N, Miranda I, Villaescusa I, Pereira H (2012) Removal of chromium (VI) in aqueous environments using cork and heat treated cork samples from Quercus cerris and Quercus suber. BioResources 7(4):4843–4857

    Google Scholar 

  • Shin EW (2005) Cadmium removal by Juniperus monosperma. The role of calcium oxalate monohydrate structure in bark. Korean J Chem Eng 22(4):599–604

    Article  CAS  Google Scholar 

  • Shin EW, Karthikeyan KG, Tshabalala MA (2007) Adsorption mechanism of cadmium on juniper bark and wood. Bioresour Technol 98:588–594

    Article  CAS  Google Scholar 

  • Tuck CO, Pérez E, Horváth IT, Sheldon RA, Poliakoff M (2012) Valorization of biomass: deriving more value from waste. Science 337:695–699

    Article  CAS  Google Scholar 

  • Vazquez G, González-Álvarez J, Freire S, López-Lorenzo M, Antorrena G (2002) Removal of cadmium and mercury ions from aqueous solution by sorption on treated Pinus pinaster bark: kinetics and isotherms. Bioresour Technol 82:247–251

    Article  CAS  Google Scholar 

  • Villaescusa I, Martinez M, Miralles N (2000) Heavy metal uptake from aqueous solution by cork and yohimbe bark wastes. J Chem Technol Biotechnol 75:812–816

    Article  CAS  Google Scholar 

  • Villaescusa I, Fiol N, Cristiani F, Floris C, Lai S, Nurchi VM (2002) Copper (II) and nickel (II) uptake from aqueous solutions by cork wastes: a NMR and potentiometric study. Polyhedron 21:1363–1367

    Article  CAS  Google Scholar 

  • Wigginton N, Yeston J, Malakoff D (2012) Infographic: World of waste. Science 337:664–667

    Article  Google Scholar 

Download references

Acknowledgments

The Forest Research Centre is a research unit funded by the Portuguese Science and Technology Foundation (FCT) through project PEst-OE/AGR/UI0239/2011. The first author acknowledges a postdoctoral scholarship from FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Şen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Şen, A., Pereira, H., Olivella, M.A. et al. Heavy metals removal in aqueous environments using bark as a biosorbent. Int. J. Environ. Sci. Technol. 12, 391–404 (2015). https://doi.org/10.1007/s13762-014-0525-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0525-z

Keywords

Navigation