Skip to main content
Log in

Uptake, assimilation and toxicity of cyanogenic compounds in plants: facts and fiction

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Cyanide is a simple nitrogenous compound that arises from both anthropogenic and natural sources. Plants vary considerably in their physiological and biochemical responses to different species of exogenous cyanides from reduced growth to inhibition on enzymatic activities. Also, great differences in uptake, assimilation and toxicity between free cyanide and iron cyanide have been observed. Unlike botanical uptake of free cyanide chiefly achieved by simple diffusion, iron cyanides have long been considered membrane impermeable and a protein-mediated uptake mode has been proposed. Biological fate of cyanides in plant materials is highly dependent on speciation of cyanides present. Natural development of degradation of free cyanide in plants is very obvious, where the β-cyanoalanine pathway has been widely distributed in higher plants and the production of asparagine and aspartate associated with cyanide assimilation is suggestive. Because phyto-dissociation of iron cyanides into free cyanide in plant materials is not a mandatory process involved in phyto-assimilation, plants probably metabolized them through an undiscovered degradation pathway rather than the β-cyanoalanine pathway. Available information shows phyto-assimilation of endogenous cyanide into nitrogen metabolism; however, additional efforts to fully elucidate presence of essential enzymes involved and their proteomic or DNA expression quantitatively are needed to prove and clarify phyto-benefits of assimilation of exogenous cyanide in plant nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akguc N, Ozyigit I, Yasar U, Leblebici Z, Yarci C (2010) Use of Pyracantha coccinea Roem. as a possible biomonitor for the selected heavy metals. Int J Environ Sci Technol 7:427–434

    Article  CAS  Google Scholar 

  • Ashraf MA, Maah MJ, Yusoff I (2011) Heavy metals accumulation in plants growing in ex tin mining catchment. Int J Environ Sci Technol 8:401–416

    Article  CAS  Google Scholar 

  • Banerjee AR, Banerjee R, Sharma U (2002) The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol 60:33–44

    Article  CAS  Google Scholar 

  • Barillo DJ (2009) Diagnosis and treatment of cyanide toxicity. J Burn Care Res 30:148–152

    Article  Google Scholar 

  • Bissey R, Bulter O (1934) Effect of application of sodium chlorate and ammonium thiocyanate on subsequent sowings of wheat. Agron J 26:838–842

    Article  CAS  Google Scholar 

  • Boening DW, Chew CM (1999) A critical review: general toxicity and environmental fate of three aqueous cyanide ions and associated ligands. Water Air Soil Pollut 109:67–79

    Article  CAS  Google Scholar 

  • Briggs GG, Rigitano RLO, Bromilow RH (1987) Physio-chemical factors affecting uptake by roots and translocation to shoots of weak acids in barley. Pestic Sci 19:101–112

    Article  CAS  Google Scholar 

  • Bruneau L, Chapman R, Marsolais F (2006) Co-occurrence of both l-asparaginase subtypes in Arabidopsis: At3g16150 encodes a K+-dependent l-asparaginase. Planta 224:668–679

    Article  CAS  Google Scholar 

  • Burken JG, Schnoor JL (1997) Uptake and metabolism of atrazine by poplar trees. Environ Sci Technol 31:1399–1406

    Article  CAS  Google Scholar 

  • Burken JG, Schnoor JL (1998) Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ Sci Technol 32:3379–3385

    Article  CAS  Google Scholar 

  • Bushey JT, Ebbs SD, Dzombak D (2006a) Development of a plant uptake model for cyanide. Int J Phytoremediat 8:25–43

    Article  CAS  Google Scholar 

  • Bushey JT, Small M, Dzombak D, Ebbs SD (2006b) Parameter estimation of a plant uptake model for cyanide: application to hydroponic data. Int J Phytoremediat 8:45–62

    Article  CAS  Google Scholar 

  • Castric PA, Farnden KJF, Conn EE (1972) Cyanide metabolism in higher plants. V. The formation of Asparagine from β-cyanoalanine. Arch Biochem Biophys 152:62–69

    Article  CAS  Google Scholar 

  • Cheng B, Hu CW, Zhao YJ (2011) Effects of plants development and pollutant loading on performance of vertical subsurface flow constructed wetlands. Int J Environ Sci Technol 8:177–186

    Article  CAS  Google Scholar 

  • Chew MY (1973) Rhodanes in higher plants. Phytochemistry 12:2365–2367

    Article  CAS  Google Scholar 

  • Cohen CK, Fox TC, Garvin DF, Kocian LV (1998) The role of iron-deficiency stress responses in stimulating heavy metal transport in plants. Plant Physiol 116:1063–1072

    Article  CAS  Google Scholar 

  • Cooper CE, Brown GC (2008) The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J Bioenergy Biomemb 40:533–539

    Article  CAS  Google Scholar 

  • Dede G, Ozdemir S, Hulusi Dede O (2012) Effect of soil amendments on phytoextraction potential of Brassica juncea growing on sewage sludge. Int J Environ Sci Technol 9:559–564

    Article  CAS  Google Scholar 

  • Donato DB, Nichols O, Possingham H, Moore M, Ricci PF, Noller BN (2007) A critical review of the effects of gold cyanide-bearing tailings solutions on wildlife. Environ Int 33:974–984

    Article  CAS  Google Scholar 

  • Dubey A, Shiwani S (2012) Adsorption of lead using a new green material obtained from Portulaca plant. Int J Environ Sci Technol 9:15–20

    Article  CAS  Google Scholar 

  • Dzombak DA, Ghosh RS, Young TC (2005) Physical–chemical properties and reactivity of cyanide in water and soil. In: Dzombak DA, Ghosh RS, Wong-Chong GW (eds) Cyanide in water and soil: chemistry, risk, and management. CRC Press, Boca Raton, pp 58–92

    Google Scholar 

  • Ebbs SD (2004) Biological degradation of cyanide compounds. Curr Opin Biotechnol 15:231–236

    Article  CAS  Google Scholar 

  • Ebbs SD, Bushey J, Poston S, Kosma D, Samiotakis M, Dzombak D (2003) Transport and metabolism of free cyanide and iron cyanide complexes by willow. Plant Cell Environ 26:1467–1478

    Article  CAS  Google Scholar 

  • Ebbs SD, Wong-Chong GM, Bond BS, Bushy JT, Neuhauser EF (2006) Biological transformation of cyanide water and soil. In: Dzombak DA, Ghosh RS, Wong-Chong GM (eds) Cyanide in water and soil: chemistry, risk, and management. CRC Press, Boca Raton, pp 93–122

    Google Scholar 

  • Ebbs SD, Piccinin RC, Goodger JQD, Kolev SD, Woodrow IW, Baker AJM (2008) Transport of ferrocyanide by two eucalypt species and sorghum. Int J Phytoremediat 10:343–357

    Article  CAS  Google Scholar 

  • Ebbs SD, Kosma D, Nielson EH, Machingura M, Baker AJM, Woodrow IE (2010) Nitrogen supply and cyanide concentration influence the enrichment of nitrogen from cyanide in wheat (Triticum aestivum L.) and sorghum (Sorghum bicolor L.). Plant Cell Environ 33:1152–1160

    CAS  Google Scholar 

  • Ebel M, Evangelou MWH, Schaeffer A (2007) Cyanide phytoremediation by water hyacinths (Eichhornia crassipes). Chemosphere 66:816–823

    Article  CAS  Google Scholar 

  • Eisler R, Wiemeyer SN (2004) Cyanide hazards to plants and animals from gold mining and related water issues. Rev Environ Contam Toxicol 183:21–54

    CAS  Google Scholar 

  • Federico R, Giartosio CE (1983) A transplasmamembrane electron transport system in maize. Plant Physiol 73:182–184

    Article  CAS  Google Scholar 

  • Ghosh RS, Dzombak DA, Luthy RG, Nakles DV (1999) Subsurface fate and transport of cyanide species at a manufactured-gas plant site. Water Environ Res 71:1205–1216

    Article  CAS  Google Scholar 

  • Ghosh RS, Nakles DV, Murarka P, Neuhauser EF (2004) Cyanide speciation in soil and groundwater at manufactured gas plant (MGP) sites. Environ Eng Sci 21(6):752–767

    Article  CAS  Google Scholar 

  • Goudey JS, Tittle FL, Spencer MS (1989) A role for ethylene in the metabolism of cyanide by higher plants. Plant Physiol 89:1306–1310

    Article  CAS  Google Scholar 

  • Halkier BA, Scheller HV, Møller BL (1988) Cyanogenic glucosides: the biosynthesis pathway and the enzyme system involved. In: Evered D, Garnety SF (eds) Cyanide compounds in biology. Wiley, Chichester, pp 49–66

    Google Scholar 

  • Harada E, Sugase K, Namba K, Iwashita T, Murata Y (2007) Structural element responsible for the Fe(III)–phytosiderophores specific transport by HvYS1 transporter in barley. FEBS Lett 581:4298–4302

    Article  CAS  Google Scholar 

  • Hegazy AK, Abdel-Ghani NT, EI-Chaghaby GA (2011) Phytoremediation of industrial wastewater potentiality by Typha domingensis. Int J Environ Sci Technol 8:639–648

    Article  CAS  Google Scholar 

  • Kang DH, Hong LY, Schwab AP, Banks MK (2007) Removal of Prussian blue from contaminated soil in the rhizosphere of cyanogenic plants. Chemosphere 69:1492–1498

    Article  CAS  Google Scholar 

  • Kao CM, Liu JK, Lou HR, Lin CS, Chen SC (2003) Biotransformation of cyanide to methane and ammonia by Klebsiella oxytoca. Chemosphere 50:1055–1061

    Article  CAS  Google Scholar 

  • Karimi N, Ghaderian SM, Schat H (2013) Arsenic in soil and vegetation of a contaminated area. Int J Environ Sci Technol 10:743–752

    Article  CAS  Google Scholar 

  • Kim SA, Guerino ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581:2273–2280

    Article  CAS  Google Scholar 

  • Kjeldsen P (1999) Behaviour of cyanides in soil and groundwater: a review. Water Air Soil Pollut 115:279–307

    Article  CAS  Google Scholar 

  • Kord B, Mataji A, Babaie S (2010) Pine (Pinus Eldarica Medw.) needles as indicator for heavy metals pollution. Int J Environ Sci Technol 7:79–84

    Article  CAS  Google Scholar 

  • Korte F, Spiteller M, Coulston F (2000) The cyanide leaching gold recovery process is a non-sustainable technology with unacceptable impacts on ecosystems and humans: the disaster in Romania. Ecotoxicol Environ Saf 46:241–245

    Article  CAS  Google Scholar 

  • Larsen M, Trapp S (2006) Uptake of iron cyanide complexes into willow trees. Environ Sci Technol 40:1956–1961

    Article  CAS  Google Scholar 

  • Larsen M, Trapp S, Pirandello A (2004) Removal of cyanide by woody plants. Chemosphere 54:325–333

    Article  CAS  Google Scholar 

  • Larsen M, Ucisik A, Trapp S (2005) Uptake, metabolism, accumulation and toxicity of cyanide in willow trees. Environ Sci Technol 39:2135–2142

    Article  CAS  Google Scholar 

  • Lea PJ, Sodek L, Parry MAJ (2007) Asparagine in plants. Ann Appl Biol 150:1–26

    Article  CAS  Google Scholar 

  • Lechtenberg M, Nahrstedt A (1999) Naturally occurring glycosides. In: Ikan R (ed) Cyanogenic glycosides. Wiley, Chichester, pp 147–191

    Google Scholar 

  • Ling T, Jun R, Fangke Y (2011) Effect of cadmium supply levels to cadmium accumulation by Salix. Int J Environ Sci Technol 8:493–500

    Article  CAS  Google Scholar 

  • Machingura M, Ebbs S (2010) Increased beta-cyanoalanine synthase and asparaginase activity in nitrogen-deprived wheat exposed to cyanide. J Plant Nutr Soil Sci 173:808–810

    Article  CAS  Google Scholar 

  • Manar R, Bonnard M, Rast C, Veber AM, Vasseur P (2011) Ecotoxicity of cyanide complexes in industrially contaminated soils. J Hazard Mater 197:369–377

    Article  CAS  Google Scholar 

  • Manning K (1988) Detoxification of cyanide by plants and hormone action. In: Foundation Ciba (ed) Cyanide compounds in biology. Wiley, Chichester, pp 92–110

    Google Scholar 

  • Maruyama A, Saito K, Ishizawam K (2001) Beta-cyanoalanine synthase and cysteine synthase from potato: molecular cloning, biochemical characterization, and spatial and hormonal regulation. Plant Mol Biol 46:749–760

    Article  CAS  Google Scholar 

  • McMahon-Smith J, Arteca RN (2000) Molecular control of ethylene production by cyanide in Arabidopsis thaliana. Physiol Plant 109:180–187

    Article  Google Scholar 

  • Meeussen JCL, Keizer MG, de Haan FAM (1992) Chemical stability and decomposition rate of iron cyanide complexes in soil solutions. Environ Sci Technol 26:511–516

    Article  CAS  Google Scholar 

  • Meeussen JCL, van Riemsdijk WH, van der Zee SEATM (1995) Transport of complexed cyanide in soil. Geoderma 67:73–85

    Article  CAS  Google Scholar 

  • Miller JM, Conn EE (1980) Metabolism of hydrogen cyanide by higher plants. Plant Physiol 65:1199–1202

    Article  CAS  Google Scholar 

  • Mino Y, Ishida T, Ota N, Inoue M, Nomoto K, Takemoto T, Tanaka H, Sugiura Y (1983) Mugineic acid–iron (III) complex and its structurally analogous cobalt (III) complex: characterization and implication for absorption and transport of iron in graminaceous plants. J Am Chem Soc 105:4611–4676

    Article  Google Scholar 

  • Mudder T, Botz M (2001) A guide to cyanide. Min Environ Manag 9:8–12

    Google Scholar 

  • Niedzwidez-Siegien I (1998) Cyanogenic glucosides in Linum usitatissimum. Phytochemistry 1:59–63

    Article  Google Scholar 

  • Pablo F, Stauber JL, Buckney RT (1997) Toxicity of cyanide and cyanide complexes to the marine diatom, Nitzschia closterium. Water Res 31:2435–2442

    Article  CAS  Google Scholar 

  • Parween T, Jan S, Mahmooduzzafar, Fatma T (2012) Evaluation of oxidative stress in Vigna radiata L. in response to chlorpyrifos. Int J Environ Sci Technol 9:605–612

    Article  CAS  Google Scholar 

  • Paungfoo-Lonhienne C, Lonhienne TGA, Rentsch D, Robinson N, Christie M, Webb RI, Gamage HK, Carroll BJ, Schenk PM, Schmidt S (2008) Plants can use protein as a nitrogen source without assistance from other organisms. Proc Natl Acad Sci USA 105:4524–4529

    Article  CAS  Google Scholar 

  • Peiser GD, Wang TT, Hoffman NE, Yang SF, Walsh CT (1984) Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carbonxylic acid during its conversion to ethylene. Proc Natl Acad Sci USA 81:3059–3063

    Google Scholar 

  • Piotrowski M, Volmer JJ (2006) Cyanide metabolism in higher plants: cyanoalanine hydratase is a NIT4 homolog. Plant Mol Biol 61:111–122

    Article  CAS  Google Scholar 

  • Piotrowski M, Schonfelder S, Weiler EW (2001) The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode beta-cyano-l-alanine hydratase/nitrilase. J Biol Chem 276:2616–2621

    Article  CAS  Google Scholar 

  • Poulton JE (1990) Cyanogenesis in plants. Plant Physiol 94:401–405

    Article  CAS  Google Scholar 

  • Rennert T, Mansfeldt T (2002) Sorption of iron-cyanide complexes on goethite in the presence of sulfate and desorption with phosphate and chloride. J Environ Qual 31:745–751

    Article  CAS  Google Scholar 

  • Roustan JL, Sablayrolles JM (2003) Feasibility of measuring ferri-cyanide reduction by yeast to estimate their activity during alcoholic fermentation in wine-making conditions. J Biosci Bioeng 96:434–437

    Article  CAS  Google Scholar 

  • Samiotakis M, Ebbs SD (2004) Possible evidence for transport of an iron cyanide complex by plants. Environ Pollut 127:169–173

    Article  CAS  Google Scholar 

  • Schnepp R (2006) Cyanide: sources, perceptions, and risks. J Emerg Nurs 32:S3–S7

    Article  Google Scholar 

  • Shirai R (1978) Study on cyanide metabolizing activity in mesocarp of Rosaceae. J Coll Arts Sci Chiba Univ B-11

  • Shirai R, Kurihara T (1991) Distribution of rhodanese in plants. J Plant Res 104:341–346

    Google Scholar 

  • Siedow JN, Umbach AL (1995) Plant mitochondrial electron transfer and molecular biology. Plant Cell 7:821–831

    Article  CAS  Google Scholar 

  • Solmonson LP (1981) Cyanide as a metabolic inhibitor. In: Vennesland B, Conn EE, Knowles CJ, Westley J, Wissing F (eds) Cyanide in biology. Academic Press, London, pp 11–28

    Google Scholar 

  • Sreekanth TVM, Nagajoythi PC, Lee KD, Prasad TNVKV (2013) Occurrence, physiological responses and toxicity of nickel in plants. Int J Environ Sci Technol 10:1129–1140

    Article  CAS  Google Scholar 

  • Srivastava AC, Duvvuru Muni RE (2010) Phytoremediation of cyanides. In: Ashraf M (ed) Plant adaptation and phytoremediation. Springer Science+Business Media B.V., Berlin, pp 399–424

    Chapter  Google Scholar 

  • Tang P, Hseu YC, Chou HH, Huang KY, Chen SC (2010) Proteomic analysis of the effect of cyanide on Klebsiella oxytoca. Curr Microbiol 60:224–228

    Article  CAS  Google Scholar 

  • Theis TL, Young TC, Huang M, Knutsen KC (1994) Leachate characteristics and composition of cyanide-bearing wastes from manufactured gas plants. Environ Sci Technol 28:99–106

    Article  CAS  Google Scholar 

  • Tomati U, Federici G, Cannella C (1972) Rhodanese activity in chloroplasts. Physiol Chem Phys 4:193–196

    CAS  Google Scholar 

  • Trapp S, Christiansen H (2003) Phytoremediation of cyanide-polluted soils. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley, Hoboken, pp 829–862

    Chapter  Google Scholar 

  • Trapp S, McFarlane C, Matthies M (1994) Model for uptake of xenobiotics into plants: validation with bromacil experiments. Environ Toxicol Chem 13:413–422

    Article  CAS  Google Scholar 

  • Trapp S, Larsen M, Pirandello A, Danquah-Boakye L (2003) Feasibility of cyanide elimination using plants. Eur J Miner Proc Environ Protect 3:128–137

    Google Scholar 

  • Vetter J (2000) Plant cyanogenic glycosides. Toxicon 38:11–36

    Article  CAS  Google Scholar 

  • Wagner AM, Krab K (1995) The alternative respiration pathway in plants: role and regulation. Physiol Plant 95:318–325

    Article  CAS  Google Scholar 

  • Wallace A, Cha JW, Mueller RT (1977) Cyanide effects on transport of trace materials in plants. Commun Soil Sci Plan 8:709–715

    Article  CAS  Google Scholar 

  • White DM, Pilon TA, Woolard C (2000) Biological treatment of cyanide containing wastewater. Water Res 34:2105–2109

    Article  CAS  Google Scholar 

  • Wong-Chong GM, Ghosh RS, Bushey JT, Ebbs SD, Neuhauser EF (2006) Natural sources of cyanide. In: Dzombak DA, Ghosh RS, Wong-Chong GM (eds) Cyanide in water and soil: chemistry, risk, and management. CRC Press, Boca Raton, pp 25–40

    Google Scholar 

  • Yngard R, Damrongsiri S, Osathaphan K, Sharma VK (2007) Ferrate (VI) oxidation of zinc-cyanide complex. Chemosphere 69:729–735

    Article  CAS  Google Scholar 

  • Yu XZ, Gu JD (2007) Difference in Michaelis–Menten kinetics for different cultivars of maize during cyanide removal. Ecotoxicol Environ Saf 67:254–259

    Article  CAS  Google Scholar 

  • Yu XZ, Gu JD (2009) Uptake, accumulation and metabolic response of ferricyanide in weeping willows. J Environ Monit 11:145–152

    Article  CAS  Google Scholar 

  • Yu XZ, Gu JD (2010) Effect of temperature on removal of iron cyanides from solutions by maize plants. Environ Sci Pollut Res 17:106–114

    Article  CAS  Google Scholar 

  • Yu XZ, Zhang FZ (2012) Activities of nitrate reductase and glutamine synthetase in rice seedlings during cyanide metabolism. J Hazard Mater 225–226:190–194

    Article  CAS  Google Scholar 

  • Yu XZ, Zhang FZ (2013) Effects of exogenous thiocyanate on mineral nutrients, antioxidative responses and free amino acids in rice seedlings. Ecotoxicology 22:752–760

    Article  CAS  Google Scholar 

  • Yu XZ, Trapp S, Zhou PH, Wang C, Zhou XS (2004) Metabolism of cyanide by Chinese vegetation. Chemosphere 56:121–126

    Article  CAS  Google Scholar 

  • Yu XZ, Trapp S, Zhou PH (2005a) Phytotoxicity of cyanide to weeping willow trees. Environ Sci Pollut Res 12:109–113

    Article  CAS  Google Scholar 

  • Yu XZ, Zhou PH, Zhou XS, Liu YD (2005b) Cyanide removal by Chinese vegetation: quantification of the MichaelisMenten kinetics. Environ Sci Pollut Res 12:227–232

    Article  CAS  Google Scholar 

  • Yu XZ, Gu JD, Liu S (2007) Biotransformation and metabolic responses of cyanide in weeping willows. J Hazard Mater 147:838–844

    Article  CAS  Google Scholar 

  • Yu XZ, Gu JD, Li L (2008) Assimilation and physiological effects of ferrocyanide on weeping willows. Ecotoxicol Environ Saf 71:609–615

    Article  CAS  Google Scholar 

  • Yu XZ, Li F, Li K (2011a) A possible new mechanism involved in ferro-cyanide metabolism by plants. Environ Sci Pollut Res 18:1343–61350

    Article  CAS  Google Scholar 

  • Yu XZ, Peng XY, Wang GL (2011b) Photo-induced dissociation of ferri- and ferro-cyanide in hydroponic solution. Int J Environ Sci Technol 8:853–862

    Article  CAS  Google Scholar 

  • Yu XZ, Zhang FZ, Li F (2012a) Phytotoxicity of thiocyanate to rice seedlings. Bull Environ Contam Toxicol 88:703–706

    Article  CAS  Google Scholar 

  • Yu XZ, Li F, Li K (2012b) Effects of pH on ferri-cyanide uptake and assimilation by several plants. Int J Environ Sci Technol 9:227–233

    Article  CAS  Google Scholar 

  • Yu XZ, Lu PC, Yu Z (2012c) On the role of β-cyanoalanine synthase (CAS) in metabolism of free cyanide and ferri-cyanide by rice seedlings. Ecotoxicology 21:548–556

    Article  CAS  Google Scholar 

  • Yu XZ, Sheng PP, Gu JG, Zhou Y, Zhang FZ (2012d) Evidence of iron cyanides as supplementary nitrogen source to rice seedlings. Ecotoxicology 21:1642–1650

    Article  CAS  Google Scholar 

  • Yu XZ, Zhang FZ, Peng XY (2013) Effects of inhibitors on ferricyanide uptake and assimilation by plants. Int J Environ Sci Technol 10:125–132

    Article  CAS  Google Scholar 

  • Zagrobelny MBS, Rasmussen AV, Jørgensen B, Naumann CM, Møller BL (2004) Cyanogenic glucosides and plant–insect interactions. Phytochemistry 65:293–306

    Article  CAS  Google Scholar 

  • Zagury GJ, Oudjehani K, Deschenes L (2004) Characterization and availability of cyanide in solid mine tailings from gold extraction plants. Sci Total Environ 320:211–224

    Article  CAS  Google Scholar 

  • Zheng A, Dzombak DA, Luthy RG (2004) Effects of thiocyanate on the formation of free cyanide during chlorination and ultraviolet disinfection of publicly owned treatment works secondary effluent. Water Environ Res 76:205–212

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Dr. S.-Z. Huang and Mr. Y.-X. Feng in preparation of figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.-Z. Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, XZ. Uptake, assimilation and toxicity of cyanogenic compounds in plants: facts and fiction. Int. J. Environ. Sci. Technol. 12, 763–774 (2015). https://doi.org/10.1007/s13762-014-0571-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0571-6

Keywords

Navigation