Skip to main content

Advertisement

Log in

System boundary setting in life cycle assessment of biorefineries: a review

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

A growing interest for biorefineries has resulted in a subsequent increase in publication of lifecycle assessments (LCA) of such systems in later years. This study explores choices made in system boundary setting in LCAs of biorefinery systems. Based on a review of 38 case studies published in the scientific literature, the study aims to identify and discuss methodological differences and effects of these on overall results. The review shows that the definition of feedstock is of key importance for chosen system boundary settings. Direct inputs and agriculture activities are included in 80 % of the systems where feedstock is regarded as dedicated biomass, while omitted when defined as residue. Land conversion for provision of dedicated biomass, as well as use of agriculture/forest residues, results in impacts with direct connection to the investigated biorefinery system, motivating inclusion of these processes in the assessment. However, these aspects are considered in less than 40 and 30 % of systems using dedicated biomass and residues as feedstock, respectively. Indirect land use changes and ‘lost opportunities’ can be relevant to assess—independent of the type of feedstock used, particularly when using consequential modeling. Such indirect aspects are, however, not always addressed in a coherent manner. Finally, it is observed that the end-of-life stage of bio-materials/chemicals commonly is not captured within set system boundaries, generating comparative disadvantage for bio-based systems, when compared to fossil reference systems. In summary, it can be concluded that omitting key issues from the investigated system can reduce the relevance of gained results, as well as the possibilities for cross-study comparisons. This calls for further development and use of already existing guidelines in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Lost opportunities are here defined as any changes in the system caused by feedstock provision, other than the ones addressed related to land use changes.

References

  • Ahlgren S, Di Lucia L (2014) Indirect land use changes of biofuel production—a review of modelling efforts and policy developments in the European Union. Biotechnol Biofuel 7(1):1–10

    Article  Google Scholar 

  • Ahlgren S, Björklund A, Ekman A, Karlsson H, Berlin J, Börjesson P, Ekvall T, Finnveden G, Janssen M, strid i (2013) LCA of biorefineries—identification of key issues and methodological recommendations. Report No 2013:25, f3 The Swedish Knowledge Centre for Renewable Transportation Fuels, Sweden. www.f3centre.se

  • Ahlgren S, Björklund A, Ekman A, Karlsson H, Berlin J, Börjesson P, Ekvall T, Finnveden G, Janssen M, Strid I (2015) Review of methodological choices in LCA of biorefinery systems—key issues and recommendations. Biofuels Bioprod Bioref 9(1):606–619. doi:10.1002/bbb.1563

    Article  CAS  Google Scholar 

  • Bernstad A, Wenzel H, Jansen JLC (2016) Identification of decisive parameters in LCA of food waste management—an analytical review. J Clean Prod 119:13–24

    Article  Google Scholar 

  • BioGrace (2014). Harmonization of greenhouse gas (GHG) emission calculations of biofuels throughout the European Union. http://www.biograce.net/

  • Blanco-Canqui H, Lal R (2009) Corn stover removal for expanded uses reduces soil fertility and structural stability. Soil Sci Soc Am J 73(2):418–426

    Article  CAS  Google Scholar 

  • Boldrin A, Balzan A, Astrup T (2013) Energy and environmental analysis of a rapeseed biorefinery conversion process. Biomass Conv Bioref 3(1):127–141

    Article  CAS  Google Scholar 

  • Brandão M, Levasseur A, Kirschbaum MUF, Weidema BP, Cowie AL, Jorgensen SV (2013) Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting. Int J Life Cycle Ass 18(1):230–240

    Article  Google Scholar 

  • BSI (2011) PAS 2050:2011—specification for the assessment of the life cycle greenhouse gas emissions of goods and services. British Standards Institution (BSI), London

  • Caffrey KR, Veal MW, Chinn MS (2014) The farm to biorefinery continuum: a techno-economic and LCA analysis of ethanol production from sweet sorghum juice. Agric Sys 130:55–66

    Article  Google Scholar 

  • Cai Z, Laughlin RJ, Stevens RJ (2001) Nitrous oxide and dinitrogen emissions from soil under different water regimes and straw amendment. Chemosphere 42:113–121

    Article  CAS  Google Scholar 

  • Cavalett O, Junqueira TL, Dias MOS, Jesus CDF, Mantelatto PE, Cunha MP, Franco HCJ, Cardoso TF, Maciel Filho R, Rossell CEV, Bonomi A (2012) Environmental and economic assessment of sugarcane first generation biorefineriesin Brazil. Clean Techn Environ Policy 14:399–410. doi:10.1007/s10098-011-0424-7

    Article  CAS  Google Scholar 

  • Cherubini F, Jungmeier G (2008) Biorefinery concept: energy and material recovery from biomass. A Life Cycle Assessment case study, Internal Report, Joanneum Research, Institute for Energy Research, Elisabethstraße 5, 8010 Graz, Austria

  • Cherubini F, Jungmeier G (2010) LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass. Int J Life Cycle Assess 15(1):53–66

    Article  CAS  Google Scholar 

  • Cherubini F, Strømman AH (2011) Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresour Technol 102:437–451

    Article  CAS  Google Scholar 

  • Cherubini F, Ulgiati S (2010) Crop residues as raw materials for biorefinery systems—a LCA case study. Appl Energy 87(1):47–57

    Article  CAS  Google Scholar 

  • Cherubini F, Bird ND, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S (2009) Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour Conserv Recy 53:434–447

    Article  Google Scholar 

  • D’Avino L, Dainelli R, Lazzeri L, Spugnoli P (2015) The role of co-products in biorefinery sustainability: energy allocation versus substitution method in rapeseed and carinata biodiesel chains. J Clean Prod 94:108–115

    Article  Google Scholar 

  • De Rosa M, Schmidt J, Trydeman Knudsen M, Hermansen JE (2014). Methodologies accounting for indirect Land Use Change (iLUC): assessment and future development. In: Proceedings from 9th international conference LCA of food San Francisco, USA 8th–10th of October 2014

  • Delivand MK, Gnansounou E (2013) Life cycle environmental impacts of a prospective palm-based biorefinery in Pará State-Brazil. Bioresour Technol 150:438–446

    Article  Google Scholar 

  • Dornburg V, Lewandowski I, Patel M (2004) Comparing the land requirements, energy savings, and greenhouse gas emissions reduction of biobased polymers and bioenergy. J Industr Ecol 7(3–4):93–116

    Google Scholar 

  • Earles JM, Halog A (2011) Consequential life cycle assessment: a review. Int J Life Cycle Assess 16(5):445–453

    Article  Google Scholar 

  • Earles JM, Halog A, Shaler S (2011) Improving the environmental profile of wood panels via co-production of ethanol and acetic acid. Environ Sci Technol 45(22):9743–9749

    Article  CAS  Google Scholar 

  • EC (2010) International reference life cycle data system (ILCD). ILCD Handbook. European Commission Joint Research Centre (JRC), Ispra

    Google Scholar 

  • EC (2011) International Reference Life Cycle Data System (ILCD). Recommendations for life cylce impact assessment in the European context—based on existing environmental impact assessment models and factors. European Commission Joint Research Centre (JRC), Ispra

    Google Scholar 

  • EC (2015) EU Product Environmental Footprint and Organisation Environmental Footprint (PEF). European Commission Joint Research Centre (JRC), Ispra, Italy

  • Edwards R, Mulligan D, Marelli L (2010). Indirect land use change from increased biofuels demand. Comparison of models and results for marginal biofuels production from different feedstocks. Joint Research Center of the EU (JRC), Ispra, Italy. http://www.eac-quality.net/fileadmin/eac_quality/user_documents/3_pdf/Indirect_land_use_change_from_increased_biofuels_demand_-_Comparison_of_models.pdf. (Accessed February 15, 2015)

  • Ekman A, Börjesson P (2011) Environmental assessment of propionic acid produced in an agricultural biomass-based biorefinery system. J Clean Prod 19(11):1257–1265

    Article  CAS  Google Scholar 

  • Ekvall T, Getachew Assefa G, Björklund A, Eriksson O, Finnveden G (2007) What life-cycle assessment does and does not do in assessments of waste management. Waste Manage 27:989–996

    Article  Google Scholar 

  • EU (2007) Communication from the commission to the council and the European parliament on the interpretative communication on waste and by-products. Commission of the European communities. Brussels, 21.2.2007, COM (2007) 59 final

  • EU (2009) Directive 2009/28/EC of the European Parliament and of the Council on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Annex V

  • Fahd S, Fiorentino G, Mellino M, Ulgiati S (2012) Cropping bioenergy and biomaterials in marginal land: the added value of the biorefinery concept. Energy 37:79–93

    Google Scholar 

  • Falano T, Jeswani HK, Azapagic A (2014) Assessing the environmental sustainability of ethanol from integrated biorefineries. Biotechnol J 9:753–765

    Article  CAS  Google Scholar 

  • Fatih Demirbas M (2009) Biorefineries for biofuel upgrading: a critical review. Appl Energy 86(Suppl 1):S151–S161

    Article  CAS  Google Scholar 

  • Finnveden G, Hauschild M, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manage 91(1):1–21

    Article  Google Scholar 

  • Fiorentino G, Ripa M, Mellino M, Fahd S, Ulgiati S (2014) Life cycle assessment of Brassica carinata biomass conversion to bioenergy and platform chemiclas. J Clean Prod 66:174–187

    Article  CAS  Google Scholar 

  • Foereid B, De Neergaard A, Høgh-Jensen H (2004) Turnover of organic matter in a Miscanthus field: effect of time in Miscanthus cultivation and inorganic nitrogen supply. Soil Biol Biochem 36(1):1075–1085. doi:10.1016/j.soilbio.2004.03.002

    Article  CAS  Google Scholar 

  • Gawel E, Ludwig G (2011) The iLUC dilemma: how to deal with indirect land use changes when governing energy crops? Land Use Policy 28(4):846–856

    Article  Google Scholar 

  • Ghatak H (2011) Biorefineries from the perspective of sustainability: feedstocks, products, and processes. Renew Sustain Energy Rev 15(8):4042–4052

    Article  CAS  Google Scholar 

  • GHG Protocol (2013) Greenhouse gas protocol product life cycle accounting and reporting standard. World Resource Institute and the World Business Council for Sustainable Development

  • Gnansounou E, Raman JK (2016) Life cycle assessment of algae biodiesel and its co-products. Appl Energy 161(1):300–308

    Article  CAS  Google Scholar 

  • Gonzalez-Garcia S, Hospido A, Agnemo R, Svensson P, Selling E, Moreira MT, Feijoo G (2011) Environmental life cycle assessment of a Swedish dissolving pulp mill integrated biorefinery. J Ind Ecol 15(4):568–583

    Article  CAS  Google Scholar 

  • González-García S, Gullón B, Rivas S, Feijoo G, Moreira MT (2016a) Environmental performance of biomass refining into high-added value compounds. J Clean Prod 120(1):170–180

    Article  Google Scholar 

  • González-García S, Lacoste C, Aicher T, Feijoo C, Lij L, Moreira MT (2016b) Environmental sustainability of bark valorisation into biofoam and syngas. J Clean Prod 125:33–43

    Article  Google Scholar 

  • Hamelin L (2013) Carbon management and environmental consequences of agricultural biomass in a Danish Renewable Energy strategy. PhD Thesis, Department of Chemical Engineering, Biotechnology and Environmental Technology. University of Southern Denmark, Faculty of Engineering

  • Hamelin L, Naroznova I, Wenzel H (2014) Environmental consequences of different carbon alternatives for increased manure-based biogas. Appl Energy 114:774–782

    Article  CAS  Google Scholar 

  • Hoogwijk M, Faaij A, van den Broek R, Berndes G, Gielen D et al (2003) Exploration of the ranges of the global potential of biomass for energy. Biomass Bioenergy 25(2):119–133

    Article  Google Scholar 

  • IEA (2008) Bioenergy task 42 on biorefineries, minutes of the third task meeting, international energy agency. Copenhagen, Denmark, 25 and 26 March 2008. www.biorefinery.nl\IEABioenergy-Task42

  • ISO (2013) ISO 14067–Greenhouse gases—carbon footprint of products—requirements and guidelines for quantification and communication

  • Ivanov V, Stabnikov V, Ahmed Z (2015) Production and applications of crude polyhydroxyalkanoate-containing bioplastic from the organic fraction of municipal solid waste. Int J Environ Sci Technol 12(2):725–738. doi:10.1007/s13762-014-0505-3

    Article  CAS  Google Scholar 

  • Kamm B, Kamm M, Gruber PR, Kromus S (2006) Biorefinery systems—an overview. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries—industrial processes and products (Status Quo and Future Directions), vol I. Wiley-VCH, Berlin

    Google Scholar 

  • Karlsson H, Ahlgren S, Strid I, Hansson PA (2015) Faba beans for biorefinery feedstock or feed? Greenhouse gas and energy balances of different applications. Agri Systems 141:138–148

    Article  Google Scholar 

  • Kimming M, Sundberg C, Nordberg Baky A, Bernesson S, Norén O, Hansson PA (2011) Life cycle assessment of energy self-sufficiency systems based on agricultural residues for organic arable farms. Bioresour Technol 102(2):1425–1432

    Article  CAS  Google Scholar 

  • Lal R (2008) Crop residues as soil amendments and feedstock for bioethanol production. Waste Manage 28:747–758

    Article  CAS  Google Scholar 

  • Laurent A, Clavreul J, Bernstad A, Bakas I, Niero M, Gentil E, Christensen TH, Hauschild MZ (2013a) Review of LCA studies of solid waste management systems—Part I: key learnings and perspectives. Waste Manage 34(3):573–588

    Article  Google Scholar 

  • Laurent A, Clavreul J, Bernstad A, Bakas I, Niero M, Gentil E, Christensen TH, Hauschild MZ (2013b) Review of LCA studies of solid waste management systems—Part II: methodological guidance for a better practice. Waste Manage 34(3):589–606

    Article  Google Scholar 

  • Lim S, Lee KT (2011) Parallel production of biodiesel and bioethanol in palm-oil-based biorefineries: life cycle assessment on the energy and greenhouse gases emissions. Biofuels, Bioprod Biorefin 5(2):132–150

    Article  CAS  Google Scholar 

  • Liu S, Howard JR, Bujanovic B, Amidon TE (2011) Commercializing biorefinery technology: a case for the multi-product pathway to a viable biorefinery. Forests 2:929–947

    Article  Google Scholar 

  • Lombardi L, Carnevale EA, Corti A (2015) Comparison of different biological treatment scenarios for the organic fraction of municipal solid waste. Int J Environ Sci Technol 12(1):1–14. doi:10.1007/s13762-013-0421-y

    Article  CAS  Google Scholar 

  • Magalhães do Nascimento D, Dias AF, Aaújo Junior CP, Rosa MF, Morais JPS, Figueirêdo MCB (2016) A comprehensive approach for obtaining cellulose nanocrystal from coconut fiber. Part II: environmental assessment of technological pathways. Industrial Crops Prod. doi:10.1016/j.indcrop.2016.02.063

    Google Scholar 

  • Mann L, Tolbert V, Cushman J (2002) Potential environmental effects of corn (Zea mays L.) stover removal with emphasis on soil organic matter and erosion. Agri Ecosyst Enviro 89:149–166

    Article  Google Scholar 

  • Martinez-Hernandez E, Campbell G, Sadhukhan J (2013) Economic value and environmental impact (EVEI) analysis of biorefinery systems. Chem Eng Res Des 91(8):1418–1426

    Article  CAS  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog Energ Combust 38:522–550

    Article  CAS  Google Scholar 

  • Mobolaji BS, Whittaker C, Gu S, Fidalgo B (2016) Comparative evaluation of GHG emissions from the use of Miscanthus for bio-hydrocarbon production via fast pyrolysis and bio-oil upgrading. Appl Energy 176:22–33

    Article  Google Scholar 

  • Modahl IS, Brekke A, Valente C (2015) Environmental assessment of chemical products from a Norwegian biorefinery. J Cleaner Prod 94:247–259

    Article  CAS  Google Scholar 

  • Monari C, Righi S, Olsen SI (2016) Greenhouse gas emissions and energy balance of biodiesel production from microalgae cultivated in photobioreactors in Denmark: a lifecycle modelling. J Cleaner Prod 112:4084–4092

    Article  CAS  Google Scholar 

  • Nouri J, Nouri N, Moeeni M (2012) Development of industrial waste disposal scenarios using life-cycle assessment approach. Int J Environ Sci Technol 9(3):417–424

    Article  CAS  Google Scholar 

  • Ofori-Boateng C, Teong Lee K (2014) An oil palm-based biorefinery concept for cellulosic ethanol and phytochemicals production: sustainability evaluation using exergetic lifecycle assessment. Appl Therm Eng 62:90–104

    Article  CAS  Google Scholar 

  • Peters GP, Aamaas B, Lund MT, Solli C, Fuglestvedt JS (2011) Alter native global warming metrics in life cycle assessment: a case study with existing transportation data. Environ Sci Technol 45(20):8633–8641

    Article  CAS  Google Scholar 

  • Piemonte V (2012) Wood residues as raw material for biorefinery systems: LCA case study on bioethanol and electricity production. J Polym Environ 20(2):299–304

    Article  CAS  Google Scholar 

  • Pinzón R, Fábrega J, Vega D, Vallester E, Aizprúa R, López-Serrano FR, Ogden RL, Espino K (2012) Estimates of biomass and fixed carbon at a rainforest in panama. Air Soil Water Res 5:79–89

    Article  Google Scholar 

  • Rahman MO, Hussain A, Basri H (2014) A critical review on waste paper sorting techniques. Int J Environ Sci Technol 11(2):551–564

    Article  CAS  Google Scholar 

  • Raman J, Gnansounou E (2015) LCA of bioethanol and furfural production from vetiver. Bioresour Technol 185:202–210

    Article  CAS  Google Scholar 

  • Searchinger TD (2010) Biofuels and the need for additional carbon. Environ Res Lett 5(2):4–7

    Article  Google Scholar 

  • Schmer MR, Dose HL (2014) Cob biomass supply for combined heat and power and biofuel in the north central USA. Biomass Bioenergy 64:321–328

    Article  Google Scholar 

  • Seghetta M, Marchi M, Thomsen M, Bjerre A-B, Bast S (2016) Modelling biogenic carbon flow in a macroalgal biorefinery system. Algal Res 18:144–155

    Article  Google Scholar 

  • Shaaban M, Peng Q, Hu R (2016) Soil nitrous oxide and carbon dioxide emissions following incorporation of above- and below-ground biomass of green bean. Int J Environ Sci Technol 13:179–186. doi:10.1007/s13762-015-0843-9

    Article  CAS  Google Scholar 

  • Silalertruksa T, Gheewala SH, Pongpat P (2015) Sustainability assessment of sugarcane biorefinery and molasses ethanol production in Thailand using eco-efficiency indicator. Appl Energy 160:603–609

    Article  CAS  Google Scholar 

  • Silalertruksa S, Pongpat P, Gheewala SH (2016) Life cycle assessment for enhancing environmental sustainability of sugarcane biorefinery in Thailand. J Cleaner Prod In press

  • Singh A, Pant D, Korres NE, Nizami AS, Prasad S, Murphy JD (2010) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresour Technol 101:5003–5012

    Article  CAS  Google Scholar 

  • Soh L, Montazeri M, Haznedaroglu BZ, Kelly C, Peccia J, Eckelman MJ, Zimmerman JB (2014) Evaluating microalgal integrated biorefinery schemes: empirical controlled growth studies and life cycle assessment. Bioresour Technol 151:19–27

    Article  CAS  Google Scholar 

  • Souza SP, de Ávila MT, Pacca SR (2012) Life cycle assessment of sugarcane ethanol and palm oil biodiesel joint production. Biomass Bioenerg 44:70–79

    Article  CAS  Google Scholar 

  • Statistics Denmark (2012) AFG1: Crops by crop, unit and area. Statbank. www.dst.dk

  • Stehfest E, Bouwman L (2006) N2O and NO emission from agricutural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutr Cycl Agroecosyst 74:207–228

    Article  CAS  Google Scholar 

  • Stromberg PM, Gasparatos A, Lee JSH, Garcia-Ulloa J, Koh LP, Takeuchi K (2010) Impacts of liquid biofuels on ecosystem services and biodiversity. UNU-IAS Policy Report, Institute of Advanced Studies. United Nations University, Yokohama, Japan

  • Tonini D, Astrup T (2012) Life-cycle assessment of a waste refinery process for enzymatic treatment of municipal solid waste. Waste Manage 32(1):165–176

    Article  CAS  Google Scholar 

  • Tonini D, Hamelin L, Astrup T (2016) Environmental implications of the use of agro-industrial residues for biorefineries: application of a deterministic model for indirect land-use changes. GCB Bioenergy 8:690–706. doi:10.1111/gcbb.1229

    Article  CAS  Google Scholar 

  • Tufvesson L, Börjesson P (2008) Wax production from renewable feedstock using biocatalysts instead of fossil feedstock and conventional methods. Int J Life Cycle Assess 13:328–338. doi:10.1007/s11367-008-0004-1

    Article  CAS  Google Scholar 

  • Uihlein A, Schebek L (2009) Environmental impacts of a lignocellulose feedstock biorefinery system: an assessment. Biomass Bioenerg 33(5):793–802

    Article  CAS  Google Scholar 

  • UK Department for Transport (2014) renewable transport fuel obligation (RTFO) guidance. Renewable Transport Fuel Obligation guidance for Year 7 released. 8 April 2014. https://www.gov.uk/government/publications/rtfo-guidance

  • van Groenigen JW, Velthof GL, Oenema O, Van Groenigen KJ, Van Kessel C (2010) Towards an agronomic assessment of N2O emissions: a case study for arable crops. Eur J Soil Sci 61:903–913. doi:10.1111/j.1365-2389.2009.01217.x

    Article  Google Scholar 

  • van Oorschot M, Ros J, Notenboom J (2011) Evaluation of the indirect effects of biofuel production on biodiversity: assessment across spatial and temporal scales. Netherlands Environmental Assessment Agency (PBL) 1–8

  • Vazquez-Rowe I, Marvuglia A, Rege S, Benetto E (2014) Applying consequential LCA to support energy policy: land use change effects of bioenergy production. Sci Total Environ 472:78–89

    Article  CAS  Google Scholar 

  • Villanueva A, Wenzel H (2007) Paper waste—recycling, incineration or landfilling? A review of existing life cycle assessments. Waste Manage 27(1):29–46

    Article  Google Scholar 

  • Voeks RA, Rahmatian M (2004) The providence of nature: valuing ecosystem services. Int J Environ Sci Technol. doi:10.1007/BF03325828

    Google Scholar 

  • Wang B, Gebreslassie BH, You F (2013) Sustainable design and synthesis of hydrocarbon biorefinery via gasification pathway: Integrated life cycle assessment and technoeconomic analysis with multiobjective superstructure optimization. Comput Chem Eng 52:55–76

  • Weidema B (2003) Market information in life cycle assessment. Copenhagen, Denmark, Ministry of the Environment, Danish Environmental Protection Agency; Environmental project 863

  • Weidema B Ekvall T and Heijungs R (2009) Guidelines for applications of deepened and broadened LCA. Italian National Agency on new Technologies, Energy and the Environment (ENEA)

  • Wienhold BJ, Gilley JE (2010) Cob removal effect on sediment and runoff nutrient loss from a silt loam soil. Agron J 102(1):1448–1452

    Article  CAS  Google Scholar 

  • Wilhem WW, Johnson JMF, Hatfield JL, Voorhees WB, Linden DR (2004) Crop and soil productivity response to corn residue removal: a literature review. Agron J 96(1):1–17

    Article  Google Scholar 

  • Zamagni A, Guinée J, Heijungs R, Masoni P, Raggi A (2012) Lights and shadows in consequential LCA. Int J Life Cycle Assessment 17(7):904–918

    Article  Google Scholar 

  • Zaman AU (2010) Comparative study of municipal solid waste treatment technologies using life cycle assessment method Int J. Environ Sci Technol 7(2):225–234

    CAS  Google Scholar 

  • Zaman AU (2013) Life cycle assessment of pyrolysis–gasification as an emerging municipal solid waste treatment technology. Int J Environ Sci Technol 11(5):1029–1038. doi:10.1007/s13762-013-0230-3

    Article  Google Scholar 

  • Zhang YP (2008) Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J Ind Microb Biotech 35(1):367–375

    Article  CAS  Google Scholar 

  • Zhang Y, Liang K, Li J, Zhao C, Qu D (2016) LCA as a decision support tool for evaluating cleaner production schemes in iron making industry. Sustainability 35(1):195–203

    Google Scholar 

Download references

Acknowledgments

The author is gratefully acknowledging the financial support provided through the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the scholarship BJT A12/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bernstad Saraiva.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernstad Saraiva, A. System boundary setting in life cycle assessment of biorefineries: a review. Int. J. Environ. Sci. Technol. 14, 435–452 (2017). https://doi.org/10.1007/s13762-016-1138-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-1138-5

Keywords

Navigation