Skip to main content
Log in

Preparation, characterization, and gas permeation properties of blend membranes of polysulfone and polyethylene glycol inclusive alumina nanoparticles

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The effect of incorporation of alumina nanoparticles on the gas separation properties of the polysulfone–polyethylene glycol blend membranes containing 20% polyethylene glycol was examined. At first, a number of nanocomposite polysulfone–polyethylene glycol/alumina membranes were synthesized with alumina nanoparticles loaded into the polymer matrixes. The hybrid membranes were synthesized with six different alumina contents of 2.5, 5, 10, 15, 20, and 30 wt%. The polysulfone–polyethylene glycol and their hybrids inclusive alumina membranes were prepared via thermal phase-inversion method. The membranes were initially characterized using Fourier transform infrared spectroscopy, scanning electron microscope, and X-ray diffraction. Gas permeation properties of these membranes with different alumina contents were investigated for pure CO2, CH4, N2, and O2 gases. The results showed that not only these gases permeability but the CO2/N2, CO2/CH4, and O2/N2 ideal selectivity were improved with increasing alumina nanoparticle content of the membrane as well. Also the effect of feed pressure on the permeation properties of these membranes was investigated for pure CO2 gas. Finally, the results from the synthesized membranes were compared with Robeson’s upper bound line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abu-Zahra MRM, Feron PHM, Jansens PJ et al (2009) New process concepts for CO2 post-combustion capture process integrated with coproduction of hydrogen. J Hydrog Energy 34:3392–4004

    Article  Google Scholar 

  • Adhikari AK, Lin KS (2016) Improving CO2 adsorption capacities and CO2/N2 separation efficiencies of MOF-74(Ni, Co) by doping palladium-containing activated carbon. J Chem Eng 284:1348–1360

    Article  CAS  Google Scholar 

  • Ameri E, Sadeghi M, Zarei N et al (2015) Enhancement of the gas separation properties of polyurethane membranes by alumina nanoparticles. J Membr Sci 479:11–19

    Article  CAS  Google Scholar 

  • Baker RW (2000) Membrane technology and applications, 1st edn. McGraw-Hill, New York

    Google Scholar 

  • Barquín AF, Coterillo CC, Palomino M et al (2016) Permselectivity improvement in membranes for CO2/N2 separation. Sep Purif Technol 157:102–111

    Article  Google Scholar 

  • Berchtold KA (2006) Novel polymeric-metallic composite membranes for CO2 separation at elevated temperatures. In: American filtration and separation society fall topical conference, Pittsburgh

  • Brunettia A, Scuraa F, Barbieria G et al (2010) Membrane technologies for CO2 separation. J Membr Sci 359:115–125

    Article  Google Scholar 

  • Carreon MA, Li S, Falconer JL et al (2008) Alumina-supported SAPO-34 membranes for CO2/CH4 separation. J Am Chem Soc 130:5412–5413

    Article  CAS  Google Scholar 

  • Cavenati S, Grande CA, Rodrigues AE (2006) Removal of carbon dioxide from natural gas by vacuum pressure swing adsorption. Energy Fuels 20:2648–2659

    Article  CAS  Google Scholar 

  • Fernandez E, Medrano JA, Melendez J et al (2016) Preparation and characterization of metallic supported thin Pd–Ag membranes for hydrogen separation. J Chem Eng 305:182–190

    Article  CAS  Google Scholar 

  • Kargari A, Takht Ravanchi M (2012) Carbon dioxide: capturing and utilization. Intech Croatia 1:3–30

    Google Scholar 

  • Khosravi A, Sadeghi M, Zare Banadkohi H et al (2014) Polyurethane-silica nanocomposite membranes for separation of propane/methane and ethane/methane. Ind Eng Chem Res 53:2011–2021

    Article  CAS  Google Scholar 

  • Kim H, Park H (2011) Gas diffusivity, solubility and permeability in polysulfone–poly (ethylene oxide) random copolymer membranes. J Membr Sci 372:116–124

    Article  CAS  Google Scholar 

  • Klara SM, Srivastava RD (2002) US DOE integrated collaborative technology development program for CO2 separation and capture. Environ Prog 21:247–253

    Article  CAS  Google Scholar 

  • Li J, Wang S, Nagai K, Nakagawa T (1998) Effect of poly ethylene glycol (PEG) on gas permeability and permselectivity in its cellulose acetate (CA) blend membranes. J Membr Sci 138:143–152

    Article  CAS  Google Scholar 

  • Li X, Ma L, Zhang H et al (2015) Synergistic effect of combining carbon nanotubes and grapheneoxide in mixed matrix membranes for efficient CO2 separation. J Membr Sci 479:1–10

    Article  Google Scholar 

  • Liu J, Shi F (2010) Research progress of removing hydrogen sulfide technology. Liaoning Chem Ind 39:292–294

    CAS  Google Scholar 

  • Lovineh SG, Asghari M, Khanbabaei G (2014) CO2 permeation through poly (amide-6-b-ethylene oxide)-nanosilica membranes. Appl Surf Sci 318:176–179

    Article  CAS  Google Scholar 

  • Ng BC, Hasbullah H, Ismail AF et al (2004) Formation of asymmetric polysulfone flat sheet membrane for gas separation: rheological assessment. Regional Symposium on Membrane Science and Technology 21–25

  • Nour M, Berean K, Chrimes A et al (2014) Silver nanoparticle/PDMS nanocomposite catalytic membranes for H2S gas removal. J Membr Sci 470:346–355

    Article  CAS  Google Scholar 

  • Olajire AA (2010) CO2 capture and separation technologies for end-of-pipe applications. J Energy 35:2610–2628

    Article  CAS  Google Scholar 

  • Pavia DL, Lampman GM, Kriz GS et al (2009) Introduction to spectroscopy, 4th edn. Bellingham

  • Pourafshari Chenar M, Rajabi H, Pakizeh M et al (2013) Effect of solvent type on the morphology and gas permeation properties of polysulfone–silica nanocomposite membranes. J Polym Res 20:216

    Article  Google Scholar 

  • Qing S, Huang W, Yan D (2006) Synthesis and properties of soluble sulfonated polybenzimidazoles. React Funct Polym 66:219–227

    Article  CAS  Google Scholar 

  • Rafiq S, Man Z, Maulud A et al (2012) Separation of CO2 from CH4 using polysulfone/polyimide silica nanocomposite membranes. Sep Purif Technol 90:162–172

    Article  CAS  Google Scholar 

  • Ren X, Ren J, Deng M (2012) Poly(amide-6-b-ethylene oxide) membranes for sour gas separation. Sep Purif Technol 89:1–8

    Article  CAS  Google Scholar 

  • Robeson LM (2008) The upper bound revisited. J Membr Sci 320:390–400

    Article  CAS  Google Scholar 

  • Sadeghi M, Khanbabaei G, Saeedi Dehaghani AH et al (2008a) Gas permeation properties of ethylene vinyl acetate-silica nanocomposite membranes. J Membr Sci 322:423–428

    Article  CAS  Google Scholar 

  • Sadeghi M, Pourafshari Chenar M, Rahimian M, Moradi S, Saeedi Dehaghani AH (2008b) Gas permeation properties of polyvinylchloride/polyethyleneglycol blend membranes. J Appl Polym Sci 110:1093–1098

    Article  CAS  Google Scholar 

  • Saleh TA, Gupta VK (2012) Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance. Sep Purif Technol 89:245–251

    Article  CAS  Google Scholar 

  • Stern SA, Bhide BD (1989) Permeability of silicone polymers to ammonia and hydrogen sulfide. J Appl Polym Sci 38:2131–2147

    Article  CAS  Google Scholar 

  • Tena A, Fernández L, Sánchez M et al (2010) Mixed matrix membranes of 6FDA–6FpDA with surface functionalized γ-alumina particles. An analysis of the improvement of permselectivity for several gas pairs. Chem Eng Sci 65:2227–2235

    Article  CAS  Google Scholar 

  • Tirouni I, Sadeghi M, Pakizeh M (2015) Separation of C3H8 and C2H6 from CH4 in polyurethane–zeolite 4Å and ZSM-5 mixed matrix membranes. Sep Purif Technol 141:394–402

    Article  CAS  Google Scholar 

  • Torabi B, Ameri E (2016) Methyl acetate production by coupled esterification-reaction process using synthesized cross-linked PVA/silica nanocomposite membranes. J Chem Eng 288:461–472

    Article  CAS  Google Scholar 

  • Vijayalakshmi R, Rajendran V (2012) Synthesis and characterization of nano-TiO2 via different methods. Arch Appl Sci Res 4:1183–1190

    CAS  Google Scholar 

  • Yeung KL, Aravind R, Szegner J et al (1996) Metal composite membranes: synthesis, characterization and reaction studies. J Stud Surf Sci Catal 101:1349–1358

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. M. Sadeghi (Isfahan University of Technology, Chemical Engineering Faculty, Isfahan, Iran) for encouraging them to carry out the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ameri.

Additional information

Editorial responsibiility: Necip Atar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamiji, T., Ameri, E. Preparation, characterization, and gas permeation properties of blend membranes of polysulfone and polyethylene glycol inclusive alumina nanoparticles. Int. J. Environ. Sci. Technol. 14, 1235–1242 (2017). https://doi.org/10.1007/s13762-016-1238-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-1238-2

Keywords

Navigation