Skip to main content

Advertisement

Log in

Emerging technologies and safety concerns: a condensed review of environmental life cycle risks in the nano-world

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The functionalities of nano-materials are accompanied by features that are in collision with the postulates of environmental friendliness and sustainability. Nano-related research, part of which is nano-safety, is gaining momentum worldwide, but there is a limited body of knowledge about mechanisms such as the degradation, surface modification and transformation of nanoparticles. This study aims to provide a brief survey on the challenges that researchers and engineers face when attempting to assess the environmental impacts of nano-based products. The applicability of the life cycle assessment method to nanotechnology is briefly explored. The advancement of nano-specific life cycle approaches capable of evaluating the sustainability of these emerging technologies depends on further research on material inventories, the energy efficiency of manufacturing processes, the transport and fate of nanoparticles in the environment, health risks and mitigation techniques. Specialized nano-based product-related databases are still needed to track engineered nano-materials (ENMs) in the environment and to facilitate life cycle inventories and assessment. Permissible exposure limits for key ENMs in the workplace and standardized handling protocols for ENMs are not widely available. Properties that increase their toxicity and bioaccumulation are being increasingly investigated. The dissemination of information to the general public related to risk management is rather sporadic, and the suitability of current regulation for controlling environmental pollution by ENM is subject to continued discussion. Taking into account the environment health and safety challenges mentioned, a suitable expertise and information dissemination network is proposed to take the responsible application of nanotechnology forward in the developing world context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez P, Colvin V, Lead J, Stone V (2009) Research priorities to advance eco-responsible nanotechnology. ACS Nano 3(7):1616–1619

    Article  CAS  Google Scholar 

  • Arvidsson R, Molander S, Sandén BA (2011) Impacts of a silver-coated future: particle flow analysis of silver nanoparticles. J Ind Ecol 15(6):844–854

    Article  CAS  Google Scholar 

  • Arvidsson R, Molander S, Sandén BA, Hassellöv M (2012) Assessing the environmental risks of silver from clothes in an urban area. Hum Ecol Risk Assess 20(4):1008–1022

    Article  Google Scholar 

  • Ban CE, Stefan A, Dinca I, Pelin G, Ficai A, Andronescu E, Oprea O, Voicu G (2016) Multi-walled carbon nanotubes effect in polypropylene nanocomposites. Mater Technol 50(1):11–16. doi:10.17222/mit.2014.142

    Google Scholar 

  • Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139

    Article  CAS  Google Scholar 

  • Bernesson S, Nilsson D, Hansson PA (2006) A limited LCA comparing large- and small-scale production of ethanol for heavy engines under Swedish conditions. Biomass Bioenergy 30:46–57. doi:10.1016/j.biombioe.2005.10.002

    Article  CAS  Google Scholar 

  • BEUC (2016) The European Consumer Organization. http://www.beuc.org. Accessed 17 Aug 2016

  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181. doi:10.1007/s00204-013-1079-4

    Article  CAS  Google Scholar 

  • Bushra R, Shahadat M, Khan MA et al (2015) Preparation of polyaniline based nanocomposite material and their environmental applications. Int J Environ Sci Technol 12:3635. doi:10.1007/s13762-014-0726-5

    Article  CAS  Google Scholar 

  • Casals E, Gonzalez E, Puntes VF (2012) Reactivity of inorganic nanoparticles in biological environments: insights into nanotoxicity mechanisms. J Phys D Appl Phys 45(44):443001

    Article  Google Scholar 

  • Chen JS, Liu H, Qiao SZ, Lou XW (2011) Carbon-supported ultra-thin anatase TiO2 nanosheets for fast reversible lithium storage. J Mater Chem 21:5687–5692. doi:10.1039/c0jm04412a

    Article  CAS  Google Scholar 

  • Chowdhury I, Hong Y, Honda RJ, Walker SL (2011) Mechanisms of TiO2 nanoparticle transport in porous media: role of solution chemistry, nanoparticle concentration, and flow rate. J Colloid Interface Sci 360(2):548–555

    Article  CAS  Google Scholar 

  • Chowdhury I, Walker SL, Mylon SE (2013) Aggregate morphology of nano-TiO2: role of primary particle size, solution chemistry, and organic matter. Environ Sci. doi:10.1039/c2em30680h

    Google Scholar 

  • Conradi M (2013) Nanosilica-reinforced polymer composites. Mater Technol 47(3):285–293

    CAS  Google Scholar 

  • CPI 2013—Project on Emerging Nanotechnologies (2013) Consumer Products Inventory. Retrieved from http://www.nanotechproject.org/cpi. Accessed 14 Aug 2016

  • Das SK, Mandal AB (2015) Green synthesis of nanomaterials with special reference to environmental and biomedical applications. Curr Sci India 108(11):1999–2002

    CAS  Google Scholar 

  • Dhingra R, Naidu S, Upreti G, Sawhney R (2010) Sustainable nanotechnology: through green methods and life-cycle thinking. Sustainability 2:3323–3338. doi:10.3390/su2103323

    Article  Google Scholar 

  • Disdier C (2016) Evaluation of the efects of TiO2 nanoparticles exposure on the adult and vulnerable brains. Toxicology and food chain. Universite Paris-Saclay, 1 Jun 2016. NNT: 2016SACLS097. https://tel.archives-ouvertes.fr/tel-01312182

  • EU Nanosafety Cluster (2016) http://www.nanosafetycluster.eu/publications-and-outputs/publications.html. Accessed 28 Jun 2016

  • Eason T, Meyer D, Curran MA, Upadhyayula VKK (2011) Guidance to facilitate decisions for sustainable nanotechnology. U.S. Environmental Protection Agency, Washington

    Google Scholar 

  • Ebrahimnia-Bajestan E, Niazmand H, Duangthongsuk W, Wongwises S (2011) Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under a laminar flow regime. Int J Heat Mass Transf 54(19–20):4376–4388

    Article  CAS  Google Scholar 

  • Ecoinvent (2010) Ecoinvent data v2.2. In: Weidema B, Hischier R (eds) Ecoinvent Center. St. Gallen, Switzerland: Swiss Center for Life Cycle Inventories

  • Galeone A, Vecchio G, Malvindi MA, Brunetti V, Cingolani R, Pompa PP (2012) In vivo assessment of CdSe–ZnS quantum dots: coating dependent bioaccumulation and genotoxicity. Nanoscale 4(20):6401–6407

    Article  CAS  Google Scholar 

  • Gavankar S, Suh S, Keller AF (2012) Life cycle assessment at nanoscale: review and recommendations. Int J Life Cycle Assess 17:295. doi:10.1007/s11367-011-0368-5

    Article  Google Scholar 

  • Gavankar S, Suh S, Keller AA (2015) The role of scale and technology maturity in life cycle assessment of emerging technologies: a case study on carbon nanotubes. J Ind Ecol 19:51–60. doi:10.1111/jiec.12175

    Article  CAS  Google Scholar 

  • Glisovic S (2015) In: Vaseashta A (ed) Life cycle modelling in life cycle analysis of nanoparticles: risk, assessment, and sustainability. DEStech Publications, Lancaster, pp 55–95

    Google Scholar 

  • Glisovic S, Stojiljkovic E, Stojiljkovic P (2015) The state of play in disseminating LCM practices in the Western Balkan region: the attitude of Serbian SMEs. Int J Life Cycle Assess. doi:10.1007/s11367-015-0894-7

    Google Scholar 

  • Godinez IG, Darnault CJG (2011) Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity. Water Res 45(2):839–851

    Article  CAS  Google Scholar 

  • Gottschalk F, Nowack B (2011) Release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz R, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  Google Scholar 

  • Grieger KD, Laurent A, Miseljic M et al (2012) Analysis of current research addressing complementary use of lifecycle assessment and risk assessment for engineered nanomaterials: have lessons been learned from previous experience with chemicals. J Nanopart Res 14:958. doi:10.1007/s11051-012-0958-6

    Article  Google Scholar 

  • Grubb GF, Bakshi BR (2011) Life cycle of titanium dioxide nanoparticle production. J Ind Ecol 15:81–95. doi:10.1111/j.1530-9290.2010.00292.x

    Article  CAS  Google Scholar 

  • Gutowski TG, Liow JH, Sekulic DP (2010) Minimum exergy requirements for the manufacturing of carbon nanotubes. In: IEEE, international symposium on sustainable systems and technologies, Washington

  • Hansen SF, Michelson ES, Kamper A, Borling P, Stuer-Lauridsen F, Baun A (2008) Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology 17(5):438–447

    Article  CAS  Google Scholar 

  • Hansen SF, Baun A, Alstrup-Jensen K (2011) NanoRiskCat—a conceptual decision support tool for nanomaterials. Danish Ministry of the Environment. Environmental Project No. 1372 http://www2.mst.dk/udgiv/publications/2011/12/978-87-92779-11-3.pdf. Accessed 9 Sept 2016

  • Hendren CO, Mesnard X, Droge J, Wiesner MR (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45:2562–2569. doi:10.1021/es103300g

    Article  CAS  Google Scholar 

  • Hischier R, Walser T (2012) Life cycle assessment of engineered nanomaterials: state of the art and strategies to overcome existing gaps. Sci Total Environ 425:271–282. doi:10.1016/j.scitotenv.2012.03.001

    Article  CAS  Google Scholar 

  • Hu Y, Sun X (2014) Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies. J Mater Chem A2:10712–10738. doi:10.1039/c4ta00716f

    Article  Google Scholar 

  • ILCD Handbook (2010) International reference life cycle data system—General guide for life cycle assessment, European Commission—Joint Research Center—Institute for Environment and Sustainability, Ispra, Italy

  • Jebali A, Behzadi A, Rezapor I et al (2015) Adsorption of humic acid by amine-modified nanocellulose: an experimental and simulation study. Int J Environ Sci Technol 12:45. doi:10.1007/s13762-014-0659-z

    Article  CAS  Google Scholar 

  • Kahru A, Ivask A (2013) Mapping the dawn of nanoecotoxicological research. Acc Chem Res 46(3):823–833

    Article  CAS  Google Scholar 

  • Kang JL, Moon C, Lee HS, Lee HW, Park EM, Kim HS, Castranova V (2008) Comparison of the biological activity between ultrafine and fine titanium dioxide particles in RAW264.7 cells associated with oxidative stress. J Toxicol Environ Health Part A 71:478–485

    Article  CAS  Google Scholar 

  • Kasemets K, Suppi S, Kunnis K, Kahru A (2013) Toxicity of CuO nanoparticles to yeast Saccharomyces cerevisiae BY4741 wildtype and its nine isogenic single-gene deletion mutants. Chem Res Toxicol 26(3):356–367

    Article  CAS  Google Scholar 

  • Keller AA, McFerran S, Lazareva A, Suh S (2013) Global lifecycle releases of engineered nanomaterials. J Nanopart Res 15:1692. doi:10.1007/s11051-013-1692-4

    Article  Google Scholar 

  • Khanna V, Bakshi BR (2009) Carbon nanofiber polymer composites: evaluation of life cycle energy use. Environ Sci Technol 43:2078–2084

    Article  CAS  Google Scholar 

  • Khanna V, Bakshi BR, Lee LJ (2008) Carbon nanofiber production: life cycle energy consumption and environmental impact. J Ind Ecol 12:394–410

    Article  CAS  Google Scholar 

  • Kim TK, Saders BV, Moon J, Kim T, Liu CH, Khamwannah J, Chun D, Choi D, Kargar A, Chen R, Liu Z, Jin S (2015) Tandem structured spectrally selective coating layer of copper oxide nanowires combined with cobalt oxide nanoparticles. Nano Energy 11:247–259. doi:10.1016/j.nanoen.2014.10.018

    Article  CAS  Google Scholar 

  • Kiser MA, Westerhof P, Benn T, Wang Y, Pérez-Rivera J, Hristovski K (2009) Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol 43(17):6757–6763

    Article  CAS  Google Scholar 

  • Kołodziejczak-Radzimska A, Jesionowski T (2014) Zinc oxide—from synthesis to application: a review. Materials 7(4):2833–2881. doi:10.3390/ma7042833

    Article  Google Scholar 

  • Krishnan N, Boyd S, Somani A, Raoux S, Clark D, Dornfeld D (2008) A hybrid life cycle inventory of nano-scale semiconductor manufacturing. Environ Sci Technol 42(8):3069–3075

    Article  CAS  Google Scholar 

  • Krug HF, Wick P (2011) Nanotoxicology: an interdisciplinary challenge. Angew Chem Int Ed 50(6):1260–1278

    Article  CAS  Google Scholar 

  • Kubina T, Dlouhý J, Köver M, Dománková M, Hodek J (2015) Preparation and thermal stability of ultrafine and nano-grained commercially pure titanium wires using conform equipment. Mater Technol 49(2):213–217. doi:10.17222/mit.2013.226

    CAS  Google Scholar 

  • Kumar A, Kumar P, Anandan A, Fernandes TF, Ayoko GA, Biskos G (2014) Engineered nanomaterials: knowledge gaps in fate, exposure, toxicity, and future directions. J Nanomater. doi:10.1155/2014/130198

    Google Scholar 

  • Kushnir D (2012) Foresight and feedback: monitoring and assessing the environmental implications of trajectories in emerging technologies. Dissertation, Chalmers University of Technology, Gothenburg

  • Kushnir D, Sanden BA (2008) Energy requirements of carbon nanoparticle production. J Ind Ecol 12:360–375

    Article  CAS  Google Scholar 

  • Lehner R, Wang X, Marsch S, Hunziker P (2013) Intelligent nanomaterials for medicine: carrier platforms and targeting strategies in the context of clinical application. Nanomedicine NBM 9:742–757. doi:10.1016/j.nano.2013.01.012

    Article  CAS  Google Scholar 

  • Li MH, Pokhrel S, Jin X, Madler L, Damoiseaux R, Hoek EMV (2011) Stability, bioavailability, and bacterial toxicity of ZnO and iron-doped ZnO nanoparticles in aquatic media. Environ Sci Technol 45(2):755–761

    Article  CAS  Google Scholar 

  • Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40(14):4374–4381

    Article  Google Scholar 

  • Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–6899

    Article  CAS  Google Scholar 

  • Lundin M, Bengtsson M, Molander S (2000) Life cycle assessment of wastewater systems: influence of system boundaries and scale on calculated environmental loads. Environ Sci Technol 34(1):180–186

    Article  CAS  Google Scholar 

  • Ma H, Kabengi NJ, Bertsch PM, Unrine JM, Glenn TC, Williams PL (2011) Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: the importance of illumination mode and primary particle size. Environ Pollut 159(6):1473–1480

    Article  CAS  Google Scholar 

  • Mahendra S, Huiguang Z, Colvin VL, Alvarez PJ (2008) Quantum dot weathering results in microbial toxicity. Environ Sci Technol 42(24):9424–9430

    Article  CAS  Google Scholar 

  • Mahmoud ME, Abdelwahab MS, Fathallah ME (2013) Design of novel nano-sorbents based on nanomagnetic iron oxide–bound-nano-silicon oxide–immobilized-triethylenetetramine for implementation in water treatment of heavy metals. Chem Eng J 223:318–327

    Article  CAS  Google Scholar 

  • Mashford BS, Stevenson M, Popovic Z, Hamilton C, Zhou Z, Breen C, Steckel J, Bulovic V, Bawendi M, Coe-Sullivan S, Kazlas PT (2013) High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat Photonics 7:407–412. doi:10.1038/nphoton.2013.70

    Article  CAS  Google Scholar 

  • Masunaga T (2014) Nanomaterials in cosmetics-present situation and future. Yakugaku Zasshi 134:39–43. doi:10.1248/yakushi.13-00209-3

    Article  CAS  Google Scholar 

  • Matanza A, Vargas G, Leon I, Pousse M, Salmon N, Marieta C (2014) Life cycle analysis of standard and high-performance cements based on carbon nanotubes composites for construction applications. In: Proceedings of World sustainable building 2014 Barcelona Conference, vol 6, p 8. Retrived from wsb14barcelona.org/programme/pdf_poster/P-110.pdf. Accessed 8 Aug 2016

  • Merugula LA, Khanna V, Bakshi BR (2010) Comparative life cycle assessment: reinforcing wind turbine blades with carbon nanofibers. In: IEEE international symposium on sustainable systems and technology, Arlington, VA

  • Meyer DE, Curran MA, Gonzalez MA (2011) An examination of silver nanoparticles in socks using screening-level life cycle assessment. J Nanopart Res 13:147. doi:10.1007/s11051-010-0013-4

    Article  CAS  Google Scholar 

  • Michelson ES (2013) The train has left the station: the project on emerging nanotechnologies and the shaping of nanotechnology policy in the United States. Rev Policy Res 30:464–487. doi:10.1111/ropr.12034

    Article  Google Scholar 

  • Mihailovic M, Raic К, Pataric A, Volkov-Husovic T (2015) The nano-wetting aspect at the liquidmetal/sic interface. Mater Technol 49(3):413–416. doi:10.17222/mit.2014.111

    CAS  Google Scholar 

  • Miseljic M, Olsen SI (2014) Life-cycle assessment of engineered nanomaterials: a literature review of assessment status. J Nanopart Res 16(6):2427. doi:10.1007/s11051-014-2427-x

    Article  Google Scholar 

  • Moign A, Vardelle A, Themelis NJ, Legoux JG (2010) Life cycle assessment of using powder and liquid precursors in plasma spraying: the case of yttria-stabilized zirconia. Surf Coat Technol 205(2):668–673. doi:10.1016/j.surfcoat.2010.07.015

    Article  CAS  Google Scholar 

  • Monteiro-Riviere NA, Wiench K, Landsiedel R, Schulte S, Inman AO, Riviere JE (2011) Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study. Toxicol Sci 123(1):264–280. doi:10.1093/toxsci/kfr148

    Article  CAS  Google Scholar 

  • Musee N, Brent AC, Ashton PJ (2010) A South African research agenda to investigate the potential environmental, health and safety risks of nanotechnology. S Afr J Sci 106(34):6. doi:10.4102/sajs.v106i3/4.159

    Google Scholar 

  • Nanodatabase (2016) The Danish Consumer Council. The Nanodatabase. http://nanodb.dk. Accessed 14 Aug 2016

  • Nanotechnology Research Center (2011) Filling the knowledge gaps for safe nanotechnology in the workplace. A progress report from the NIOSH Nanotechnology Research Center 2004–2011, Department of Health and Human Services Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, USA

  • Nazari A, Riahi S (2010) The effects of TiO2 nanoparticles on properties of binary blended concrete. J Compos Mater 45:1181–1188

    Article  Google Scholar 

  • Nentwich M, Greßler S (2012) Nano and the environment—part I: Potential environmental benefits and sustainability effects. NanoTrust-Dossier No. 026en, March 2012: http://epub.oeaw.ac.at/ita/nanotrust-dossiers/dossier026en.pdf. Accessed 12 Sept 2016

  • Nowack B (2010) Nanosilver revisited downstream. Science 330(6007):1054–1055

    Article  CAS  Google Scholar 

  • Nowack B, Krug HF, Height M (2011) 120 Years of nanosilver history: implications for policy makers. Environ Sci Technol 45(4):1177–1183. doi:10.1021/es103316q

    Article  CAS  Google Scholar 

  • Oberdorster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1(1):2–25

    Article  CAS  Google Scholar 

  • OECD EHS (2015) Safety of manufactured nanomaterials No. 57, guidance manual towards the integration of risk assessment into life cycle assessment of nano-enabled applications, Environment Directorate, ENV/JM/MONO30, Organisation for Economic Co-operation and Development, Paris

  • Papageorgiou DG, Bakoglidis K (2012) Use of nanomaterials for the improvement of various industrial and biomedical applications: a review. J Environ Prot Ecol 13(2):593–602

    CAS  Google Scholar 

  • Petrov L, Iliev V, Eliyas A, Tomova D, Li Puma G (2007) Photocatalytic properties of modified TiO2 coatings for purification of waste water and air. J Environ Prot Ecol 8(4):881–909

    CAS  Google Scholar 

  • Piccinno F, Gottschalk F, Seeger S et al (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1109. doi:10.1007/s11051-012-1109-9

    Article  Google Scholar 

  • Pillai KV, Gray PJ, Tien CC, Bleher R, Sung LP, Duncan TV (2016) Environmental release of core–shell semiconductor nanocrystals from free-standing polymer nanocomposite films. Environ Sci Nano 3(3):657–669

    Article  Google Scholar 

  • Poursani SA, Nilchi A, Hassani AH et al (2015) A novel method for synthesis of nano-γ-Al2O3: study of adsorption behavior of chromium, nickel, cadmium and lead ions. Int J Environ Sci Technol 12:2003. doi:10.1007/s13762-014-0740-7

    Article  Google Scholar 

  • REACH 16—European Commission. Nanomaterials-Chemicals-Internal Market, Industry, Entrepreneurship and SMEs https://ec.europa.eu/growth/sectors/chemicals/reach/nanomaterials_en. Accessed 15 Aug 2016

  • Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50:2904–2939. doi:10.1002/anie.201001374

    Article  CAS  Google Scholar 

  • Sankar R, Baskaran A, Shivashangari KS, Ravikumar V (2015) Inhibition of pathogenic bacterial growth on excision wound by green synthesized copper oxide nanoparticles leads to accelerated wound healing activity in Wistar Albino rats. J Mater Sci Mater Med 26(7):214. doi:10.1007/s10856-015-5543-y

    Article  Google Scholar 

  • Sengül H, Theis TL (2011) An environmental impact assessment of quantum dot photovoltaics (QDPV) from raw material acquisition through use. J Clean Prod 19:21–31. doi:10.1016/j.jclepro.2010.08.010

    Article  Google Scholar 

  • Sharma T, Hu Y, Stoller M, Feldman M, Ruoff RS, Ferrari M, Zhang X (2011) Mesoporous silica as a membrane for ultra-thin implantable direct glucose fuel cells. Lab Chip 11:2460–2465. doi:10.1039/c1lc20119k

    Article  CAS  Google Scholar 

  • Shojaei KM, Farrahi A, Farrahi H, Farrahi A (2015) The stabilization of nano silver on polyester filament for a machine-made carpet. Mater Technol 49(3):461–464. doi:10.17222/mit.2014.113

    CAS  Google Scholar 

  • Singh A, Lou HH, Pike RW, Agboola A, Li X, Hopper RJ, Yaws CL (2008) Environmental impact assessment for potential continuous processes for the production of carbon nanotubes. Am J Environ Sci 4(5):522–534

    Article  CAS  Google Scholar 

  • Sirelkhatim A, Mahmud S, Seeni A, Mohamad-Kaus NH, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano Micro Lett 7(3):219–242. doi:10.1007/s40820-015-0040-x

    Article  CAS  Google Scholar 

  • Speder J, Altmann L, Baumer M, Kirkensgaard JJK, Mortensen K, Arenz M (2014) The particle proximity effect: from model to high surface area fuel cell catalysts. RSC Adv 4:14971–14978. doi:10.1039/c4ra00261j

    Article  CAS  Google Scholar 

  • Spisni E, Seo S, Joo SH (2016) Release and toxicity comparison between industrial- and sunscreen-derived nano-ZnO particles. Int J Environ Sci Technol 13:2485–2494. doi:10.1007/s13762-016-1077-1

    Article  CAS  Google Scholar 

  • The Royal Society Report (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. The Royal Society and The Royal Academy of Engineering. The Royal Society Publications, London

    Google Scholar 

  • Tilley RD, Cheong S (2012) Nanomaterials: earthworms lit with quantum dots. Nat Nanotechnol 8(1):6–7

    Article  Google Scholar 

  • Tong T, Binh CTT, Kelly JJ, Gaillard JF, Gray KA (2013) Cytotoxicity of commercial nano-TiO2 to Escherichia coli assessed by high-throughput screening: effects of environmental factors. Water Res 47(2013):2352–2362

    Article  CAS  Google Scholar 

  • UNEP (2011) United Nations Environment Programme. Global guidance principles for life cycle assessment databases: a basis for greener processes and products, Shonan, Japan

  • Upadhyayula VKK, Meyer DE, Curran MA, Gonzalez MA (2012) Life cycle assessment as a tool to enhance the environmental performance of carbon nanotube products: a review. J Clean Prod 26:37–47. doi:10.1016/j.jclepro.2011.12.018

    Article  CAS  Google Scholar 

  • US EPA (2000) Supplementary guidance for conducting health risk assessment of chemical mixtures. EPA/630/R-00/002, Cincinnati, Ohio, USA, ORD/NCEA

  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780. doi:10.3762/bjnano.6.181

    Article  CAS  Google Scholar 

  • Vaseashta A, Vaclavikova M, Vaseashta S, Gallios G, Pummakarnchana O (2007) Nanostructures in environmental pollution detection, monitoring, and remediation. Sci Technol Adv Mater 8:47–59

    Article  CAS  Google Scholar 

  • Von Moos N, Bowen P, Slaveykova VI (2014) Bioavailability of inorganic nanoparticles to planktonic bacteria and aquatic microalgae in freshwater. Environ Sci Nano 1:214–232. doi:10.1039/c3en00054k

    Article  Google Scholar 

  • Walker SL (2011) Fate and transport of nano TiO2 in aquatic environments. ISC Sonny Astani Department of Civil and Environmental Engineering, UC CEIN, University of California, Los Angeles

    Google Scholar 

  • Walser T, Demou E, Lang DJ, Hellweg S (2011) Prospective environmental life cycle assessment of nanosilver T-shirts. Environ Sci Technol 45(10):4570–4578

    Article  CAS  Google Scholar 

  • Wang ZY, Li J, Zhao J, Xing BS (2011) Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environ Sci Technol 45(14):6032–6040

    Article  CAS  Google Scholar 

  • Wang D, Zhu L, Chen JF, Dai L (2015) Can graphene quantum dots cause DNA damage in cells? Nanoscale 7:9894–9901. doi:10.1039/C5NR01734C

    Article  CAS  Google Scholar 

  • Werlin R, Priester JH, Mielke RE, Kramer S, Jackson S, Stoimenov PK, Stucky GD, Cherr GN, Orias E, Holden PA (2011) Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nat Nanotechnol 6(1):65–71

    Article  CAS  Google Scholar 

  • Wiesner MR, Hotze EM, Brant JA, Espinasse B (2008) Nanomaterials as possible contaminants: the fullerene example. Water Sci Technol 57(3):305–310

    Article  CAS  Google Scholar 

  • Xia T, Kovochich M, Liong K (2012) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121–2134

    Article  Google Scholar 

  • Yoshida T, Yoshioka Y, Tsutsumi Y (2012) The safety assessment of nanomaterials for development of nano-cosmetics. Yakugaku Zasshi 132(11):1231–1236. doi:10.1248/yakushi.12-00232-4

    Article  CAS  Google Scholar 

  • Zhang P, Dai XB, Gao JX, Wang P (2015) Effect of nano-SiO2 particles on fracture properties of concrete composite containing fly ash. Curr Sci India 108(11):2035–2043

    CAS  Google Scholar 

Download references

Acknowledgements

This research is partly funded by the national Ministry of Education, Science and Technological Development within the framework of projects III 43014 and III 43011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Glisovic.

Additional information

Editorial responsibility: Zhenyao Shen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glisovic, S., Pesic, D., Stojiljkovic, E. et al. Emerging technologies and safety concerns: a condensed review of environmental life cycle risks in the nano-world. Int. J. Environ. Sci. Technol. 14, 2301–2320 (2017). https://doi.org/10.1007/s13762-017-1367-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1367-2

Keywords

Navigation