Skip to main content
Log in

Kinetic and equilibrium studies on the removal of 14C-ethion residues from wastewater by copper-based metal–organic framework

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

There are compelling economic and environmental reasons to remove pesticides from wastewater because they are toxic and carcinogenic. The effectiveness of copper-based metal–organic framework (Cu-BTC) for adsorbing the insecticide 14C-ethion from wastewater has been studied as function of contact time, adsorbent dosage, temperature and pH. 14C-ethion/Cu-BTC isotherms exhibit two plateaus (BET type IV) and are reliably represented by Brunauer–Deming–Deming–Teller and Zhu–Gu models, with deviations of only 1.99 and 3.95%, respectively. The removal curve measured under batch operation is well represented by a pseudo-first-order equation, yielding results equivalent to the theoretical linear driving force model of Glueckauf. At pH 7, 75 mg L−1 ethion concentration, 150 min, 25 °C and 0.425 g L−1 Cu-BTC dose, the sorbent capacity is ca. 122 mg g−1. Moreover, Cu-BTC has a good stability after six adsorptions cycles. Finally, our results disclose the fundamental understanding of the adsorption mechanism: the ethion molecule coordinates to two copper(II) atoms across the metal–organic framework channel via the phosphoryl (P–O) group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdel-Gawad H, Abdelhameed RM, Elmesalamy AM, Hegazi B (2011) Distribution and elimination of 14C-ethion insecticide in chamomile flowers and oil. Phosphorus Sulfur Silicon 186:2122–2134. doi:10.1080/10426507.2011.588506

    Article  CAS  Google Scholar 

  • Abdelhameed RM, Abdel-Gawad H, Elshahat M, Emam HE (2016) Cu–BTC@cotton composite: design and removal of ethion insecticide from water. RSC Adv 6:42324–42333. doi:10.1039/C6RA04719J

    Article  CAS  Google Scholar 

  • Abdelhameed RM, Emam HE, Rocha J, Silva AMS (2017) Cu-BTC metal–organic framework natural fabrics composites for fuel purification. Fuel Process Technol 159:306–312. doi:10.1016/j.fuproc.2017.02.001

    Article  CAS  Google Scholar 

  • Ahmad T, Rafatullah M, Ghazali A, Sulaiman O, Hashim R, Ahmad A (2010) Removal of pesticides from water and wastewater by different adsorbents: a review. J Environ Sci Health Part C 28:231–271. doi:10.1080/10590501.2010.525782

    Article  CAS  Google Scholar 

  • Aniceto JPS, Silva CM (2015) Preparative chromatography: batch and continuous. In: Anderson JL, Berthod A, Pino V, Stalcup A (eds) Analytical separation science, vol 5, Chapter 4. Wiley, New York, pp 1207–1313

  • Asfaram A, Ghaedi M, Agarwal S (2015) Removal of basic dye Auramine-O by ZnS:Cu nanoparticles loaded on activated carbon: optimization of parameters using response surface. RSC Adv 5:18438–18450. doi:10.1039/C4RA15637D

    Article  CAS  Google Scholar 

  • Bae G-T, Dellinger B, Hall RW (2011) Density functional calculation of the structure and electronic properties of CunOn (n = 1–8) clusters. J Phys Chem A 115:2087–2095. doi:10.1021/jp104177q

    Article  CAS  Google Scholar 

  • Brunauer S, Deming LS, Deming WE, Teller E (1940) On a theory of the van der waals adsorption of gases. J Am Chem Soc 62:1723–1732. doi:10.1021/ja01864a025

    Article  CAS  Google Scholar 

  • Danmaliki GI, Saleh TA (2017) Effects of bimetallic Ce/Fe nanoparticles on the desulfurization of thiophenes using activated carbon. Chem Eng J 307:914–927. doi:10.1016/j.cej.2016.08.143

    Article  CAS  Google Scholar 

  • Danmaliki GI, Saleh TA, Shamsuddeen AA (2017) Response surface methodology optimization of adsorptive desulfurization on nickel/activated carbon. Chem Eng J 313:993–1003. doi:10.1016/j.cej.2016.10.141

    Article  CAS  Google Scholar 

  • Dehghani MH, Niasar ZS, Mehrnia MR, Shayeghi M, Al-Ghouti MA, Heibati B, McKay G, Yetilmezsoy K (2017) Optimizing the removal of organophosphorus pesticide malathion from water using multi-walled carbon nanotubes. Chem Eng J 310:22–32. doi:10.1016/j.cej.2016.10.057

    Article  CAS  Google Scholar 

  • Do DD (1998) Adsorption analysis: equilibrium kinetics. Imperial College Press, London

    Google Scholar 

  • Ebadi A, Mohammadzadeh JSS, Khudiev A (2009) What is the correct form of BET isotherm for modeling liquid phase adsorption? Adsorption 15:65–73. doi:10.1007/s10450-009-9151-3

    Article  CAS  Google Scholar 

  • Elwakeel KZ, Yousif AM (2010) Adsorption of malathion on thermally treated egg shell material. Water Sci Technol 61:1035–1041. doi:10.2166/wst.2010.005

    Article  CAS  Google Scholar 

  • Foster LJR, Kwan BH, Vancov T (2004) Microbial degradation of the organophosphate pesticide, Ethion. FEMS Microbiol Lett 240(1):49–53. doi:10.1016/j.femsle.2004.09.010

    Article  CAS  Google Scholar 

  • Girods P, Dufour A, Fierro V, Rogaume Y, Rogaume C, Zoulalian A, Celzard A (2009) Activated carbons prepared from wood particleboard wastes: characterization and phenol adsorption capacities. J Hazard Mater 166:491–501. doi:10.1016/j.jhazmat.2008.11.047

    Article  CAS  Google Scholar 

  • Glueckauf E (1955) Theory of chromatography—Part X. Formulae for diffusion into spheres and their application to chromatography. Trans Faraday Soc 51:1540–1551. doi:10.1039/TF9555101540

    Article  CAS  Google Scholar 

  • Glueckauf E, Coates J (1947) Theory of chromatography—part IV. The influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation. J Chem Soc 1315–1321. doi:10.1039/JR9470001315

  • Gnanasekaran L, Hemamalini R, Saravanan R, Ravichandran K, Gracia F, Agarwal S, Gupta VK (2017) Synthesis and characterization of metal oxides (CeO2, CuO, NiO, Mn3O4, SnO2 and ZnO) nanoparticles as photocatalysts for degradation of textile dyes. J Photochem Photobiol B Biol 173:43–49. doi:10.1016/j.jphotobiol.2017.05.027

    Article  CAS  Google Scholar 

  • Gupta VK, Jain C, Ali I, Chandra S, Agarwal S (2002) Removal of lindane and malathion from wastewater using bagasse fly ash—a sugar industry waste. Water Res 36:2483–2490. doi:10.1016/S0043-1354(01)00474-2

    Article  CAS  Google Scholar 

  • Gupta VK, Tyagi I, Agarwal S, Sadegh H, Shahryari-ghoshekandi R, Yari M, Yousefi-Nejat O (2015) Experimental study of surfaces of hydrogel polymers HEMA, HEMA–EEMA–MA, and PVA as adsorbent for removal of azo dyes from liquid phase. J Mol Liq 206:129–136. doi:10.1016/j.molliq.2015.02.015

    Article  CAS  Google Scholar 

  • Gupta VK, Saravanan R, Agarwal S, Gracia F, Khan MM, Qin J, Mangalaraja RV (2017) Degradation of azo dyes under different wavelengths of UV light with chitosan–SnO2 nanocomposites. J Mol Liq 232:423–430. doi:10.1016/j.molliq.2017.02.095

    Article  CAS  Google Scholar 

  • Habila MA, Alothman ZA, Al-Tamrah SA, Ghafar AA, Soylak M (2015) Activated carbon from waste as an efficient adsorbent for malathion for detection and removal purposes. J Ind Eng Chem 32:336–344. doi:10.1016/j.jiec.2015.09.009

    Article  CAS  Google Scholar 

  • Hasan Z, Jhung SH (2015) Removal of hazardous organics from water using metal–organic frameworks (MOFs): plausible mechanisms for selective adsorptions. J Hazardous Mater 283:329–339. doi:10.1016/j.jhazmat.2014.09.046

    Article  CAS  Google Scholar 

  • Ho Y-S, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. doi:10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  • Hoffmann I, Oppel C, Gernert U, Barreleiro P, Von Rybinski W, Gradzielski M (2012) Adsorption isotherms of cellulose-based polymers onto cotton fibers determined by means of a direct method of fluorescence spectroscopy. Langmuir 28:7695–7703. doi:10.1021/la300192q

    Article  CAS  Google Scholar 

  • Huang MR, Peng QY, Li XG (2006) Rapid and effective adsorption of lead ions on fine poly(phenylenediamine) microparticles. Chem Eur J 12:4341–4350. doi:10.1002/chem.200501070

    Article  CAS  Google Scholar 

  • Khan NA, Hasan Z, Jhung SH (2013) Adsorptive removal of hazardous materials using metal–organic frameworks (MOFs): a review. J Hazard Mater 244:444–456. doi:10.1016/j.jhazmat.2012.11.011

    Article  CAS  Google Scholar 

  • Kumar P, Singh H, Kapur M, Mondal MK (2014) Comparative study of malathion removal from aqueous solution by agricultural and commercial adsorbents. J Water Process Eng 3:67–73. doi:10.1016/j.jwpe.2014.05.010

    Article  Google Scholar 

  • Largergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. Kungliga svenska vetenskapsakademiens. Handlingar 24:1–39

    Google Scholar 

  • Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402:276–279. doi:10.1038/46248

    Article  CAS  Google Scholar 

  • Liu J, Culp JT, Natesakhawat S, Bockrath BC, Zande B, Sankar S, Garberoglio G, Johnson JK (2007) Experimental and theoretical studies of gas adsorption in Cu3(BTC)2: an effective activation procedure. J Phys Chem C 111:9305–9313. doi:10.1021/jp071449i

    Article  CAS  Google Scholar 

  • Naushad M, Alothman Z, Khan M (2013) Removal of malathion from aqueous solution using De-Acidite FF-IP resin and determination by UPLC–MS/MS: equilibrium, kinetics and thermodynamics studies. Talanta 115:15–23. doi:10.1016/j.talanta.2013.04.015

    Article  CAS  Google Scholar 

  • Nile Basin Initiative—Nile basin national water quality monitoring baseline study report for Egypt (2005) Nile Basin Regional Water Quality Monitoring Baseline Study Report—Final

  • Qadir M, Mateo-Sagasta J, Jiménez B, Siebe C, Siemens J, Hanjra MA (2015) Environmental risks and cost-effective risk management in wastewater use systems. In: Drechsel P, Qadir M, Wichelns D (eds) Wastewater—economic asset in an urbanizing world. Springer, Netherlands, pp 55–72

    Google Scholar 

  • Robati D, Mirza B, Rajabi M, Moradi O, Tyagi I, Agarwal S, Gupta VK (2016) Removal of hazardous dyes-BR 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase. Chem Eng J 284:687–697. doi:10.1016/j.cej.2015.08.131

    Article  CAS  Google Scholar 

  • Rodrigues AE, Silva CM (2016) What’s wrong with Lagergreen pseudo first order model for adsorption kinetics? Chem Eng J 306:1138–1142. doi:10.1016/j.cej.2016.08.055

    Article  CAS  Google Scholar 

  • Rowsell JL, Yaghi OM (2006) Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal–organic frameworks. J Am Chem Soc 128:1304–1315. doi:10.1021/ja056639q

    Article  CAS  Google Scholar 

  • Sainio T, Turku I (2010) Adsorption of cationic surfactants on a neutral polymer adsorbent: investigation of the interactions by using mathematical modeling. Coll Surf A 358:57–67. doi:10.1016/j.colsurfa.2010.01.031

    Article  CAS  Google Scholar 

  • Saleh TA, Sarı A, Tuzen M (2017) Effective adsorption of antimony(III) from aqueous solutions by polyamide-graphene composite as a novel adsorbent. Chem Engin J 307:230–238. doi:10.1016/j.cej.2016.08.070

    Article  CAS  Google Scholar 

  • Saravanan R, Sacari E, Gracia F, Khan MM, Mosquera E, Gupta VK (2016) Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J Mol Liq 221:1029–1033. doi:10.1016/j.molliq.2016.06.074

    Article  CAS  Google Scholar 

  • Stavila V, Talin A, Allendorf M (2014) MOF-based electronic and opto-electronic devices. Chem Soc Rev 43:5994–6010. doi:10.1039/c4cs00096j

    Article  CAS  Google Scholar 

  • Tanner PA, Leung K-H (1996) Spectral interpretation and qualitative analysis of organophosphorus pesticides using ft-raman and ft-infrared spectroscopy. Appl Spectrosc 50:565–571

    Article  CAS  Google Scholar 

  • Vishnyakov A, Ravikovitch PI, Neimark AV, Bülow M, Wang QM (2003) Nanopore structure and sorption properties of Cu–BTC metal–organic framework. Nano Lett 3:713–718. doi:10.1021/nl0341281

    Article  CAS  Google Scholar 

  • Younis SA, Ghobashy MM, Samy M (2017) Development of aminated poly(glycidyl methacrylate) nanosorbent by green gamma radiation for phenol and malathion contaminated wastewater treatment. J Environ Chem Eng 5:2325–2336. doi:10.1016/j.jece.2017.04.024

    Article  CAS  Google Scholar 

  • Zhang T, Lin W (2014) Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chem Soc Rev 43:5982–5993. doi:10.1039/C4CS00103F

    Article  CAS  Google Scholar 

  • Zhu B-Y, Gu T (1989) General isotherm equation for adsorption of surfactants at solid/liquid interfaces. Part 1. Theoretical. J Chem Soc Faraday Trans 1(85):3813–3817. doi:10.1039/F19898503813

    Article  Google Scholar 

  • Zhu B-Y, Gu T, Zhao X (1989) General isotherm equation for adsorption of surfactants at solid/liquid interfaces. Part 2. Applications. J Chem Soc Faraday Trans 1(85):3819–3824. doi:10.1039/F19898503819

    Article  Google Scholar 

  • Zhu X, Li B, Yang J, Li Y, Zhao W, Shi J, Gu J (2014) Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UIO-67. ACS Appl Mater Interfaces 7:223–231. doi:10.1021/am5059074

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the help of Prof. Dr. H. Kamel, Radioisotopes Department, Atomic Energy Authority, Cairo, Egypt, in the radioactivity measurements. This work was developed within the scope of the projects CICECO-Aveiro Institute of Materials (Ref. FCT UID/CTM/50011/2013) and UI QOPNA (Ref. FCT UID/QUI/00062/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. S. Silva.

Additional information

Editorial responsibility: V.K. Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelhameed, R.M., Abdel-Gawad, H., Silva, C.M. et al. Kinetic and equilibrium studies on the removal of 14C-ethion residues from wastewater by copper-based metal–organic framework. Int. J. Environ. Sci. Technol. 15, 2283–2294 (2018). https://doi.org/10.1007/s13762-017-1624-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1624-4

Keywords

Navigation