Skip to main content
Log in

Comparison of different natural fiber treatments: a literature review

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Interests in the use of natural fibers–fillers in composite materials are growing rapidly due to the low cost and high availability. However, poor surface adhesion and mineralization are the main drawbacks that restrict the use of natural fibers in different applications. Thus, it is essential to perform a treatment that can improve the surface properties of natural fibers before being used in the composites. Such treatments are physical (corona, plasma, etc.), chemical (alkaline, silane, acetylation, etc.), and biological (enzyme), but the benefits of each treatment considering energy consumption and effluent generation should be considered more in-depth. Via a literature review, this study investigated the mechanical performance, energy consumption, and generated effluents of chemical treatments (silane, alkaline, acetylation, and maleated coupling) as the consequence of fiber treatment to propose a more sustainable treatment at the scope of the treatment section in the factory of natural fibers–polymer composites (gate to gate). It was shown during this review study that the maleated coupling is a more sustainable method since it needs no specific energy during the treatment while produces no effluent and improves the mechanical strength performance of the composites more constantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams RH, Cerecedo-López RA, Alejandro-Álvarez LA, Domínguez-Rodríguez VI, Nieber JL (2016) Treatment of water-repellent petroleum-contaminated soil from Bemidji, Minnesota, by alkaline desorption. Int J Environ Sci Technol 13:2249–2260

    Article  CAS  Google Scholar 

  • Ali A, Shaker K, Nawab Y, Jabbar M, Hussain T, Militky J, Baheti V (2018) Hydrophobic treatment of natural fibers and their composites—a review. J Ind Text 47:2153–2183

    Article  CAS  Google Scholar 

  • Al-Maadeed MA, Labidi S (2014) 4—Recycled polymers in natural fibre-reinforced polymer composites. In: Hodzic A, Shanks RA (eds) Natural fibre composites. Woodhead Publishing, pp 103–114

  • Anand P, Anbumalar V (2017) Investigation on thermal behavior of alkali and benzoyl treated hemp fiber reinforced cellulose filled epoxy hybrid green composites. Cellul Chem Technol 51:91–101

    CAS  Google Scholar 

  • Arsène MA, Okwo A, Bilba K, Soboyejo ABO, Soboyejo WO (2007) Chemically and thermally treated vegetable fibers for reinforcement of cement-based composites. Mater Manuf Process 22:214–227

    Article  CAS  Google Scholar 

  • Atadana FW (2010) Catalytic pyrolysis of cellulose, hemicellulose and lignin model compounds. In: M.Sc. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia

  • Bachtiar D, Sapuan SM, Hamdan MM (2008) The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites. Mater Des 29:1285–1290

    Article  Google Scholar 

  • Bhattacharya A, Misra B (2004) Grafting: a versatile means to modify polymers: techniques, factors and applications. Prog Polym Sci 29:767–814

    Article  CAS  Google Scholar 

  • Biagiotti J, Puglia D, Kenny JM (2004) A review on natural fibre-based composites—part I: structure, processing and properties of vegetable fibres. J Nat Fibers 1:37–68

    Article  CAS  Google Scholar 

  • Bilba K, Arsene MA (2008) Silane treatment of bagasse fiber for reinforcement of cementitious composites. Compos A Appl Sci Manuf 39:1488–1495

    Article  CAS  Google Scholar 

  • Bisanda ETN (2000) The effect of alkali treatment on the adhesion characteristics of sisal fibres. Appl Compos Mater 7:331–339

    Article  CAS  Google Scholar 

  • Blankenhorn PR, Blankenhorn BD, Silsbee MR, DiCola M (2001) Effects of fiber surface treatments on mechanical properties of wood fiber–cement composites. Cem Concr Res 31:1049–1055

    Article  CAS  Google Scholar 

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  • Bledzki AK, Mamun AA, Lucka-Gabor M, Gutowski VS (2008) The effects of acetylation on properties of flax fibre and its polypropylene composites. eXPRESS Polym Lett 2:413–422

    Article  CAS  Google Scholar 

  • Bledzki AK, Mamun AA, Jaszkiewicz A, Erdmann K (2010) Polypropylene composites with enzyme modified abaca fibre. Compos Sci Technol 70:854–860

    Article  CAS  Google Scholar 

  • Boland C (2014) Life cycle energy and greenhouse gas emissions of natural fiber composites for automotive applications: impacts of renewable material content and lightweighting. In: M.Sc. Thesis, University of Michigan, Ann Arbor, Michigan

  • Brígida AIS, Calado VMA, Gonçalves LRB, Coelho MAZ (2010) Effect of chemical treatments on properties of green coconut fiber. Carbohydr Polym 79:832–838

    Article  CAS  Google Scholar 

  • Buschle-Diller G, Fanter C, Loth F (1999) Structural changes in hemp fibers as a result of enzymatic hydrolysis with mixed enzyme systems. Text Res J 69:244–251

    Article  CAS  Google Scholar 

  • Cavaco-Paulo A, Gübitz GM (2003) Textile processing with enzymes. Woodhead Publishing Ltd, Cambridge

    Book  Google Scholar 

  • Chand N, Fahim M (2008) Tribology of natural fiber polymer composites. Woodhead Publishing Series in Composites Science and Engineering. Elsevier, Amsterdam

    Book  Google Scholar 

  • Chandramohan D, Marimuthu K (2011) A review on natural fibers. Int J Res Rev Appl Sci 8:194–206

    Google Scholar 

  • Choy SY, Prasad KMN, Wu TY, Ramanan RN (2015) A review on common vegetables and legumes as promising plant-based natural coagulants in water clarification. Int J Environ Sci Technol 12:367–390

    Article  CAS  Google Scholar 

  • Chung DDL (2010) Composite material structure and processing. In: Composite materials: science and applications, 2nd edn. Springer, London, pp 1–34. ISBN 978-1-84882-830-8

  • Cichocki FR Jr, Thomason JL (2002) Thermoelastic anisotropy of a natural fiber. Compos Sci Technol 62:669–678

    Article  CAS  Google Scholar 

  • Clark JH, Macquarrie DJ (2008) Handbook of green chemistry and technology. Wiley, Hoboken

    Google Scholar 

  • Clauß B (2008) Fibers for ceramic matrix composites. In: Krenkel W (ed) Ceramic matrix composites: fiber reinforced ceramics and their applications. Wiley, pp 1–20, ISBN: 978-3-527-62240-5

  • Cristaldi G, Latteri A, Recca G, Cicala G (2010) Composites based on natural fibre fabrics (Chap. 17). In: Dubrovski PD (eds) Woven Fabric Engineering, Sciyo, Rijeka, Croatia, November 2010, pp 317–342. ISBN 978-953-307-194-7

  • Dam JEGV (1999) Optimisation of methods of fibre preparation from agricultural raw materials. Department of Fibres and Cellulose, Agrotechnological Research Institute, Wageningen

    Google Scholar 

  • de Camargo JSG, de Menezes AJ, da Cruz NC, Rangel EC, Delgado-Silva AO (2018) Morphological and chemical effects of plasma treatment with oxygen (O2) and sulfur hexafluoride (SF6) on cellulose surface. Mater Res 20:842–850

    Article  Google Scholar 

  • de Santos PA, Giriolli JC, Amarasekera J, Moraes G (2008) Natural fibers plastic composites for automotive applications. In: The 8th annual Society of Plastics Engineers’ (SPE) Automotive Composites Conference and Exhibition (ACCE), Sept. 16–18, Michigan State University, Troy, Michigan, pp 12–21

  • Fangueiro R (2011) Fibrous and composite materials for civil engineering applications. Elsevier, Amsterdam

    Book  Google Scholar 

  • Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596

    Article  CAS  Google Scholar 

  • Frybort S, Mauritz R, Teischinger A, Müller U (2008) Cement bonded composites—a mechanical review. BioResources 3:602–626

    Google Scholar 

  • Gassan J, Bledzki AK (1999) Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres. Compos Sci Technol 59:1303–1309

    Article  CAS  Google Scholar 

  • Gassan J, Gutowski VS (2000) Effects of corona discharge and UV treatment on the properties of jute-fibre epoxy composites. Compos Sci Technol 60:2857–2863

    Article  CAS  Google Scholar 

  • George M, Mussone PG, Bressler DC (2014) Surface and thermal characterization of natural fibres treated with enzymes. Ind Crops Prod 53:365–373

    Article  CAS  Google Scholar 

  • Ghavami K (1995) Ultimate load behaviour of bamboo-reinforced lightweight concrete beams. Cement Concr Compos 17:281–288

    Article  CAS  Google Scholar 

  • Goda K, Sreekala MS, Gomes A, Kaji T, Ohgi J (2006) Improvement of plant based natural fibers for toughening green composites—effect of load application during mercerization of ramie fibers. Compos A Appl Sci Manuf 37:2213–2220

    Article  CAS  Google Scholar 

  • Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos A Appl Sci Manuf 77:1–25

    Article  CAS  Google Scholar 

  • Han G, Lei Y, Wu Q, Kojima Y, Suzuki S (2008) Bamboo–fiber filled high density polyethylene composites: effect of coupling treatment and nanoclay. J Polym Environ 16:123–130

    Article  CAS  Google Scholar 

  • Herrera-Franco PJ, Valadez-Gonzalez A (2004) Mechanical properties of continuous natural fibre-reinforced polymer composites. Compos A Appl Sci Manuf 35:339–345

    Article  CAS  Google Scholar 

  • Hill CAS (2007) Wood modification: chemical, thermal and other processes. Wiley Series in Renewable Resource. Wiley, Hoboken

    Google Scholar 

  • Homan WJ, Jorissen AJM (2004) Wood modification developments. Heron 49:360–369

    Google Scholar 

  • Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites. Compos Interfaces 15:169–191

    Article  CAS  Google Scholar 

  • John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29:187–207

    Article  CAS  Google Scholar 

  • John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364

    Article  CAS  Google Scholar 

  • Joseph K, Thomas S, Pavithran C (1996) Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer 37:5139–5149

    Article  CAS  Google Scholar 

  • Joseph S, Koshy P, Thomas S (2005) The role of interfacial interactions on the mechanical properties of banana fibre reinforced phenol formaldehyde composites. Compos Interfaces 12:581–600

    Article  CAS  Google Scholar 

  • Joseph S, Oommen Z, Thomas S (2006) Environmental durability of banana-fiber-reinforced phenol formaldehyde composites. J Appl Polym Sci 100:2521–2531

    Article  CAS  Google Scholar 

  • Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos A Appl Sci Manuf 35:371–376

    Article  CAS  Google Scholar 

  • Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos B Eng 43:2883–2892

    Article  CAS  Google Scholar 

  • Kabir MM, Wang H, Lau KT, Cardona F (2013) Tensile properties of chemically treated hemp fibres as reinforcement for composites. Compos B Eng 53:362–368

    Article  CAS  Google Scholar 

  • Keener TJ, Stuart RK, Brown TK (2004) Maleated coupling agents for natural fibre composites. Compos A Appl Sci Manuf 35:357–362

    Article  CAS  Google Scholar 

  • Keijzer MR, van Bommel I, Joosten A, Hartl AN, Proaño Gaibor AG, Heiss R, Kralofsky R, Erlach S (2013) The colours and dyeing techniques of prehistoric textiles from the salt mines of Hallstatt. In: Grömer K, Kern A, Reschreiter H, Rösel-Mautendorfer H (eds) Budapest, Hungaria, pp 135–162

  • Kim JT, Netravali AN (2010) Mercerization of sisal fibers: effect of tension on mechanical properties of sisal fiber and fiber-reinforced composites. Compos A Appl Sci Manuf 41:1245–1252

    Article  CAS  Google Scholar 

  • Konczewicz W, Kozłowski RM (2012) Enzymatic treatment of natural fibres. In: Kozłowski R (ed) Handbook of natural fibres, 1st edn. Woodhead Publishing, pp 168–184. https://doi.org/10.1533/9780857095510.1.168

  • Koohestani B (2017) Effect of saline admixtures on mechanical and microstructural properties of cementitious matrices containing tailings. Constr Build Mater 156:1019–1027

    Article  CAS  Google Scholar 

  • Koohestani B, Belem T, Koubaa A, Bussière B (2013) Investigation of natural fibres reinforced cemented paste backfill (NFR-CPB). In: Proceedings of the 66th canadian geotechnical conference and the 11th Joint CGS/IAH-CNC groundwater conference, Montreal, Quebec, Canada, September 29 to Thursday October 3, pp 1–8

  • Koohestani B, Koubaa A, Belem T, Bussière B, Bouzahzah H (2016) Experimental investigation of mechanical and microstructural properties of cemented paste backfill containing maple-wood filler. Constr Build Mater 121:222–228

    Article  Google Scholar 

  • Koohestani B, Bussière B, Belem T, Koubaa A (2017a) Influence of polymer powder on properties of cemented paste backfill. Int J Miner Process 167:1–8

    Article  CAS  Google Scholar 

  • Koohestani B, Ganetri I, Yilmaz E (2017b) Effects of silane modified minerals on mechanical, microstructural, thermal, and rheological properties of wood plastic composites. Compos B Eng 111:103–111

    Article  CAS  Google Scholar 

  • Koohestani B, Darban AK, Darezereshki E, Mokhtari P, Yilmaz E, Yilmaz E (2018a) The influence of sodium and sulfate ions on total solidification and encapsulation potential of iron-rich acid mine drainage in silica gel. J Environ Chem Eng 6:3520–3527

    Article  CAS  Google Scholar 

  • Koohestani B, Khodadadi Darban A, Mokhtari P (2018b) A comparison between the influence of superplasticizer and organosilanes on different properties of cemented paste backfill. Constr Build Mater 173:180–188

    Article  CAS  Google Scholar 

  • Koohestani B, Khodadadi Darban A, Yilmaz E, Mokhtari P, Ganetri I (2018c) Influence of amine and vinyl functional groups of silanes on total performance of thermoplastic-based composites. Constr Build Mater 172:98–105

    Article  CAS  Google Scholar 

  • Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33

    Article  CAS  Google Scholar 

  • Lopsik K (2013) Life cycle assessment of small-scale constructed wetland and extended aeration activated sludge wastewater treatment system. Int J Environ Sci Technol 10:1295–1308

    Article  CAS  Google Scholar 

  • Lu JZ, Wu Q, Negulescu II (2005) Wood-fiber/high-density-polyethylene composites: coupling agent performance. Appl Polym Sci 96:93–102

    Article  CAS  Google Scholar 

  • Lu T et al (2014) Effects of modifications of bamboo cellulose fibers on the improved mechanical properties of cellulose reinforced poly (lactic acid) composites. Compos B Eng 62:191–197

    Article  CAS  Google Scholar 

  • Luz SM, Del Tio J, Rocha GJM, Gonçalves AR, Del’Arco AP (2008) Cellulose and cellulignin from sugarcane bagasse reinforced polypropylene composites: effect of acetylation on mechanical and thermal properties. Compos A Appl Sci Manuf 39:1362–1369

    Article  CAS  Google Scholar 

  • Malkapuram R, Kumar V, Negi YS (2009) Recent development in natural fiber reinforced polypropylene composites. J Reinf Plast Compos 28:1169–1189

    Article  CAS  Google Scholar 

  • Mallick PK (2007) Fiber-reinforced composites: materials, manufacturing, and design, 3rd edn (Mechanical Engineering). CRC Press, Boca Raton

  • Marais S, Gouanvé F, Bonnesoeur A, Grenet J, Poncin-Epaillard F, Morvan C, Métayer M (2005) Unsaturated polyester composites reinforced with flax fibers: effect of cold plasma and autoclave treatments on mechanical and permeation properties. Compos A Appl Sci Manuf 36:975–986

    Article  CAS  Google Scholar 

  • Martin AR, Manolache S, Mattoso LHC, Rowell RM, Denes F (2000) Plasma modification of sisal on high density polyethylene composites: effect on mechanical properties. In: Proceedings of the 3rd international symposium on natural polymers and composites, May 14–17, Sao Pedro, SP, Brazil, pp 431–436

  • Mohammed L, Ansari MN, Pua G, Jawaid M, Islam MS (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci 2015:243947. https://doi.org/10.1155/2015/243947

    Article  Google Scholar 

  • Mohanty S, Nayak S, Verma S, Tripathy S (2004) Effect of MAPP as a coupling agent on the performance of jute–PP composites. Reinf Plast Compos 23:625–637

    Article  CAS  Google Scholar 

  • Mohr BJ, Biernacki JJ, Kurtis KE (2007) Supplementary cementitious materials for mitigating degradation of kraft pulp fiber–cement composites. Cem Concr Res 37:1531–1543

    Article  CAS  Google Scholar 

  • Motta LAC, John VM, Agopyan V (2010) Thermo-mechanical treatment to improve properties of sisal fibres for composites. Mater Sci Forum 636–637:253–259. https://doi.org/10.4028/www.scientific.net/MSF.636-637.253

    Article  CAS  Google Scholar 

  • Müller K et al (2017) Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials 7:74

    Article  CAS  Google Scholar 

  • Mutje P, Vallejos ME, Girones J, Vilaseca F, Lopez A, Lopez JP, Mendez JA (2006) Effect of maleated polypropylene as coupling agent for polypropylene composites reinforced with hemp strands. Appl Polym Sci 102:833–840

    Article  CAS  Google Scholar 

  • Nam TH, Ogihara S, Tung NH, Kobayashi S (2011) Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly (butylene succinate) biodegradable composites. Compos B Eng 42:1648–1656

    Article  CAS  Google Scholar 

  • Nishino T, Hirao K, Kotera M (2006) X-ray diffraction studies on stress transfer of kenaf reinforced poly (l-lactic acid) composite. Compos A Appl Sci Manuf 37:2269–2273

    Article  CAS  Google Scholar 

  • Nouri J, Nouri N, Moeeni M (2012) Development of industrial waste disposal scenarios using life-cycle assessment approach. Int J Environ Sci Technol 9:417–424

    Article  CAS  Google Scholar 

  • Pehanich JL, Blankenhorn PR, Silsbee MR (2004) Wood fiber surface treatment level effects on selected mechanical properties of wood fiber–cement composites. Cem Concr Res 34:59–65

    Article  CAS  Google Scholar 

  • Pickering K (2008) Properties and performance of natural-fibre composites. Elsevier, Amsterdam

    Book  Google Scholar 

  • Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos A Appl Sci Manuf 83:98–112

    Article  CAS  Google Scholar 

  • Ragoubi M, Bienaimé D, Molina S, George B, Merlin A (2010) Impact of corona treated hemp fibres onto mechanical properties of polypropylene composites made thereof. Ind Crops Prod 31:344–349

    Article  CAS  Google Scholar 

  • Ragoubi M, George B, Molina S, Bienaimé D, Merlin A, Hiver JM, Dahoun A (2012) Effect of corona discharge treatment on mechanical and thermal properties of composites based on miscanthus fibres and polylactic acid or polypropylene matrix. Compos A Appl Sci Manuf 43:675–685

    Article  CAS  Google Scholar 

  • Ray D, Sarkar BK, Rana AK, Bose NR (2001) The mechanical properties of vinylester resin matrix composites reinforced with alkali-treated jute fibres. Compos A Appl Sci Manuf 32:119–127

    Article  CAS  Google Scholar 

  • Rout J, Misra M, Tripathy SS, Nayak SK, Mohanty AK (2001) The influence of fibre treatment on the performance of coir-polyester composites. Compos Sci Technol 61:1303–1310

    Article  CAS  Google Scholar 

  • Saba N, Tahir PM, Jawaid M (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6:2247–2273

    Article  CAS  Google Scholar 

  • Seki Y, Sever K, Sarikanat M, Gulec HA, Tavman IH (2009) The influence of oxygen plasma treatment of jute fibres on mechanical properties of jute fibre reinforced thermoplastic composites. Paper presented at the 5th international advanced technologies symposium Turkey

  • Shishoo R (2007) Plasma technologies for textiles. Elsevier, Amsterdam

    Book  Google Scholar 

  • Sobral HS (2004) Vegetable plants and their fibres as building materials. In: Proceedings of the second international RILEM symposium. Routledge

  • Sreekala M, Kumaran M, Joseph S, Jacob M, Thomas S (2000) Oil palm fibre reinforced phenol formaldehyde composites: influence of fibre surface modifications on the mechanical performance. Appl Compos Mater 7:295–329

    Article  CAS  Google Scholar 

  • Švegl F, Šuput-Strupi J, Škrlep L, Kalcher K (2008) The influence of aminosilanes on macroscopic properties of cement paste. Cem Concr Res 38:945–954

    Article  CAS  Google Scholar 

  • Toledo Filho RD, Ghavami K, England GL, Scrivener K (2003) Development of vegetable fibre–mortar composites of improved durability. Cement Concr Compos 25:185–196

    Article  CAS  Google Scholar 

  • Valadez-Gonzalez A, Cervantes-Uc JM, Olayo R, Herrera-Franco PJ (1999a) Chemical modification of henequen fibers with an organosilane coupling agent. Compos B Eng 30:321–331

    Article  Google Scholar 

  • Valadez-Gonzalez A, Cervantes-Uc JM, Olayo R, Herrera-Franco PJ (1999b) Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Compos B Eng 30:309–320

    Article  Google Scholar 

  • Van de Weyenberg I, Truong TC, Vangrimde B, Verpoest I (2006) Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment. Compos A Appl Sci Manuf 37:1368–1376

    Article  CAS  Google Scholar 

  • van Vuure A (2008) Natural fibre composites; recent developments. Katholieke Universiteit Leuven, Leuven

    Google Scholar 

  • Verma D, Jain S, Zhang X, Gope PC (2016) Green approaches to biocomposite materials science and engineering. IGI Global, Hershey

    Book  Google Scholar 

  • Vuure V et al (2013) Natural fibre composites: recent developments. In: 5th Eucass-European conference for aerospace sciences, Munich, Germany

  • Williams T, Hosur M, Theodore M, Netravali A, Rangari V, Jeelani S (2011) Time effects on morphology and bonding ability in mercerized natural fibers for composite reinforcement. Int J Polym Sci. https://doi.org/10.1155/2011/192865

    Article  Google Scholar 

  • Xiaowen Y, Jayaraman K, Bhattacharyya D (2004) Mechanical properties of plasma-treated sisal fibre-reinforced polypropylene composites. J Adhes Sci Technol 18:1027–1045

    Article  Google Scholar 

  • Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos A Appl Sci Manuf 41:806–819

    Article  CAS  Google Scholar 

  • Xu X, Jayaraman K, Morin C, Pecqueux N (2008) Life cycle assessment of wood-fibre-reinforced polypropylene composites. J Mater Process Technol 198:168–177

    Article  CAS  Google Scholar 

  • Xu A, Wang J, Wang H (2010) Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems. Green Chem 12:268–275

    Article  CAS  Google Scholar 

  • Xue Y, Veazie DR, Glinsey C, Horstemeyer MF, Rowell RM (2007) Environmental effects on the mechanical and thermomechanical properties of aspen fiber–polypropylene composites. Compos B Eng 38:152–158

    Article  CAS  Google Scholar 

  • Yi X-S, Du S, Zhang L (2017) Composite materials engineering, Volume 1: Fundamentals of composite materials. Springer, Berlin

    Google Scholar 

  • Yu S, Yang S, Cho M (2009) Multi-scale modeling of cross-linked epoxy nanocomposites. Polymer 50:945–952

    Article  CAS  Google Scholar 

  • Yuan X, Jayaraman K, Bhattacharyya D (2004) Effects of plasma treatment in enhancing the performance of woodfibre-polypropylene composites. Compos A Appl Sci Manuf 35:1363–1374

    Article  CAS  Google Scholar 

  • Zafeiropoulos NE (2011) Interface engineering of natural fibre composites for maximum performance. Woodhead Publishing, Philadelphia

    Book  Google Scholar 

  • Zafeiropoulos NE, Baillie CA, Hodgkinson JM (2002a) Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part II. The effect of surface treatments on the interface. Compos A Appl Sci Manuf 33:1185–1190

    Article  Google Scholar 

  • Zafeiropoulos NE, Williams DR, Baillie CA, Matthews FL (2002b) Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part I. Development and investigation of surface treatments. Compos A Appl Sci Manuf 33:1083–1093

    Article  Google Scholar 

  • Zaman AU (2013) Identification of waste management development drivers and potential emerging waste treatment technologies. Int J Environ Sci Technol 10:455–464

    Article  Google Scholar 

  • Zhou Y, Fan M, Chen L (2016) Interface and bonding mechanisms of plant fibre composites: an overview. Compos B Eng 101:31–45

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors of this work want to appreciate the UQAT professional and technical staffs for their helpful support and assistance. This study was accomplished by Elite Iranian Organization Research Grant (No. 316/5603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Koohestani.

Additional information

Editorial responsibility: Agnieszka Galuszka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koohestani, B., Darban, A.K., Mokhtari, P. et al. Comparison of different natural fiber treatments: a literature review. Int. J. Environ. Sci. Technol. 16, 629–642 (2019). https://doi.org/10.1007/s13762-018-1890-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-018-1890-9

Keywords

Navigation