Skip to main content

Advertisement

Log in

Using ANFIS technique for PEM fuel cell electric bicycle prediction model

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Proton exchange membrane fuel cell (PEMFC) with low emission is considered as a promising vehicular industry. To achieve higher performance, modelling of the whole PEMFC system is an essential step in designing the most efficient system. In this study, the adaptive neuro-fuzzy inference system (ANFIS) is employed to model the 250-W PEMFC which is located in an electric bicycle. The temperature, humidity, current, hydrogen and oxygen flowrate were used as the inputs and voltage and efficiency employed as the outputs. The analyses of results determine that ANFIS is an accurate and reliable technique for predicting the PEMFC performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akbari E et al (2016a) Sensor application in direct methanol fuel cells (DMFCs). Renew Sustain Energy Rev 60:1125–1139

    Article  CAS  Google Scholar 

  • Akbari E et al (2016b) ANFIS modeling for bacteria detection based on GNR biosensor. J Chem Technol Biotechnol 91(6):1728–1736

    Article  CAS  Google Scholar 

  • Akbari E et al (2018) Soft computing techniques in prediction gas sensor based 2D material. Org Electron 62:181–188

    Article  CAS  Google Scholar 

  • Azmy AM, Erlich I (2005) Online optimal management of PEMFuel cells using neural networks. IEEE Trans Power Deliv 20(2):1051–1058

    Article  Google Scholar 

  • Ball M, Wietschel M, Rentz O (2007) Integration of a hydrogen economy into the German energy system: an optimising modelling approach. Int J Hydrogen Energy 32(10–11):1355–1368

    Article  CAS  Google Scholar 

  • Baschuk JJ, Li X (2005) A general formulation for a mathematical PEM fuel cell model. J Power Sources 142(1–2):134–153

    Article  CAS  Google Scholar 

  • Bhagavatula YS, Bhagavatula MT, Dhathathreyan KS (2012) Application of artificial neural network in performance prediction of PEM fuel cell. Int J Energy Res 36(13):1215–1225

    Article  CAS  Google Scholar 

  • Boscaino V, Miceli R, Capponi G (2013) MATLAB-based simulator of a 5 kW fuel cell for power electronics design. Int J Hydrogen Energy 38(19):7924–7934

    Article  CAS  Google Scholar 

  • Brandon C, Hommann K (1996) The cost of inaction: valuing the economy-wide cost of environmental degradation in India. UNU, Institute of Advanced Studies, Kanagawa

    Google Scholar 

  • Contreras A, Posso F, Guervos E (2010) Modelling and simulation of the utilization of a PEM fuel cell in the rural sector of Venezuela. Appl Energy 87(4):1376–1385

    Article  CAS  Google Scholar 

  • Faiz A, Weaver CS, Walsh MP (1996) Air pollution from motor vehicles: standards and technologies for controlling emissions. The World Bank, Washington

    Book  Google Scholar 

  • Gong W, Cai Z (2014) Parameter optimization of PEMFC model with improved multi-strategy adaptive differential evolution. Eng Appl Artif Intell 27:28–40

    Article  Google Scholar 

  • Ismail MS et al (2014) An efficient mathematical model for air-breathing PEM fuel cells. Appl Energy 135:490–503

    Article  Google Scholar 

  • Jang J-S (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685

    Article  Google Scholar 

  • Jang JS (1996) Input selection for ANFIS learning. In: Proceedings of IEEE 5th international fuzzy systems. IEEE

  • Jang J-Y et al (2012) Experimental and numerical study of proton exchange membrane fuel cell with spiral flow channels. Appl Energy 99:67–79

    Article  CAS  Google Scholar 

  • Jemeı S et al (2003) On-board fuel cell power supply modeling on the basis of neural network methodology. J Power Sources 124(2):479–486

    Article  Google Scholar 

  • JemeÏJemei S et al (2008) A new modeling approach of embedded fuel-cell power generators based on artificial neural network. IEEE Trans Ind Electron 55(1):437–447

    Article  Google Scholar 

  • Kheirandish A, Kazemi MS, Dahari M (2014) Dynamic performance assessment of the efficiency of fuel cell-powered bicycle: an experimental approach. Int J Hydrogen Energy 39(25):13276–13284

    Article  CAS  Google Scholar 

  • Kheirandish A et al (2016a) Dynamic modelling of PEM fuel cell of power electric bicycle system. Int J Hydrogen Energy 41(22):9585–9594

    Article  CAS  Google Scholar 

  • Kheirandish A et al (2016b) Modeling of commercial proton exchange membrane fuel cell using support vector machine. Int J Hydrogen Energy 41(26):11351–11358

    Article  CAS  Google Scholar 

  • Kreinovich V, Quintana C, Reznik L (1992) Gaussian membership functions are most adequate in representing uncertainty in measurements. In: Proceedings of NAFIPS 1992

  • Lee W-Y et al (2004) Empirical modeling of polymer electrolyte membrane fuel cell performance using artificial neural networks. Int J Hydrogen Energy 29(9):961–966

    Article  CAS  Google Scholar 

  • Napoli G et al (2013) Data driven models for a PEM fuel cell stack performance prediction. Int J Hydrogen Energy 38(26):11628–11638

    Article  CAS  Google Scholar 

  • Nilashi M et al (2015) A multi-criteria collaborative filtering recommender system for the tourism domain using Expectation Maximization (EM) and PCA–ANFIS. Electron Commer Res Appl 14(6):542–562

    Article  Google Scholar 

  • Nilashi M et al (2017) A soft computing method for the prediction of energy performance of residential buildings. Measurement 109:268–280

    Article  Google Scholar 

  • Ogaji SOT et al (2006) Modelling fuel cell performance using artificial intelligence. J Power Sources 154(1):192–197

    Article  CAS  Google Scholar 

  • Ou S, Achenie LEK (2005) A hybrid neural network model for PEM fuel cells. J Power Sources 140(2):319–330

    Article  CAS  Google Scholar 

  • Özbek M et al (2013) Modeling and control of a PEM fuel cell system: a practical study based on experimental defined component behavior. J Process Control 23(3):282–293

    Article  Google Scholar 

  • Reddy CS, Raju K (2009) An improved fuzzy approach for COCOMO’s effort estimation using gaussian membership function. J Softw 4(5):452–459

    Article  Google Scholar 

  • Rezazadeh S et al (2012) Using adaptive neuro-fuzzy inference system (ANFIS) for proton exchange membrane fuel cell (PEMFC) performance modeling. J Mech Sci Technol 26(11):3701–3709

    Article  Google Scholar 

  • Rowe A, Li X (2001) Mathematical modeling of proton exchange membrane fuel cells. J Power Sources 102(1–2):82–96

    Article  CAS  Google Scholar 

  • Silva RE et al (2014) Proton exchange membrane fuel cell degradation prediction based on adaptive neuro-fuzzy inference systems. Int J Hydrogen Energy 39(21):11128–11144

    Article  CAS  Google Scholar 

  • Sisworahardjo NS et al (2010) Neural network model of 100 W portable PEM fuel cell and experimental verification. Int J Hydrogen Energy 35(17):9104–9109

    Article  CAS  Google Scholar 

  • Tiss F, Chouikh R, Guizani A (2013) Dynamic modeling of a PEM fuel cell with temperature effects. Int J Hydrogen Energy 38(20):8532–8541

    Article  CAS  Google Scholar 

  • Vural Y, Ingham DB, Pourkashanian M (2009) Performance prediction of a proton exchange membrane fuel cell using the ANFIS model. Int J Hydrogen Energy 34(22):9181–9187

    Article  CAS  Google Scholar 

  • Yu S, Jung D (2010) A study of operation strategy of cooling module with dynamic fuel cell system model for transportation application. Renew Energy 35(11):2525–2532

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the TDTU for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Akbari.

Ethics declarations

Conflict of interest

The author(s) declare that there is no conflict of interest regarding the publication of this article.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kheirandish, A., Akbari, E., Nilashi, M. et al. Using ANFIS technique for PEM fuel cell electric bicycle prediction model. Int. J. Environ. Sci. Technol. 16, 7319–7326 (2019). https://doi.org/10.1007/s13762-019-02392-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-019-02392-6

Keywords

Navigation