Skip to main content
Log in

Indirect co-culture of stem cells from human exfoliated deciduous teeth and oral cells in a microfluidic platform

  • Original Article
  • Cell Biology
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Oral epithelial-mesenchymal interactions play a key role in tooth development and assist differentiation of dental pulp. Many epithelial and mesenchymal factors in the microenvironment influence dental pulp stem cells to differentiate and regenerate. To investigate the interaction between oral cells during differentiation, we designed a microfluidic device system for indirect co-culture. The system has several advantages, such as consumption of low reagent volume, high-throughput treatment of reagents, and faster mineralization analysis. In this study, stem cells from human exfoliated deciduous teeth were treated with media cultured with human gingival fibroblasts or periodontal ligament stem cells. When human exfoliated deciduous teeth was incubated in media cultured in human gingival fibroblasts and human periodontal ligament stem cells under the concentration gradient constructed by the microfluidic system, no remarkable change in human exfoliated deciduous teeth mineralization efficiency was detected. However, osteoblast gene expression levels in human exfoliated deciduous teeth incubated with human gingival fibroblasts media decreased compared to those in human exfoliated deciduous teeth treated with human periodontal ligament stem cells media, suggesting that indirect co-culture of human exfoliated deciduous with human gingival fibroblasts may inhibit osteogenic cytodifferentiation. This microfluidic culture device allows a co-culture system set-up for sequential treatment with co-culture media and differentiation additives and facilitated the mineralization assay in a micro-culture scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 2000;97:13625–13630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 2003;100:5807–5812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004;364:149–155.

    Article  CAS  PubMed  Google Scholar 

  4. Arora V, Arora P, Munshi AK. Banking stem cells from human exfoliated deciduous teeth (SHED): saving for the future. J Clin Pediatr Dent 2009;33:289–294.

    Article  PubMed  Google Scholar 

  5. Morsczeck C, Götz W, Schierholz J, Zeilhofer F, Kühn U, Möhl C, et al. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 2005;24:155–165.

    Article  CAS  PubMed  Google Scholar 

  6. Cicconetti A, Sacchetti B, Bartoli A, Michienzi S, Corsi A, Funari A, et al. Human maxillary tuberosity and jaw periosteum as sources of osteoprogenitor cells for tissue engineering. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;104:618. e1-e12.

    Article  PubMed  Google Scholar 

  7. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, et al. Stem cell properties of human dental pulp stem cells. J Dent Res 2002;81:531–535.

    Article  CAS  PubMed  Google Scholar 

  8. Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S. The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res 2005;8:191–199.

    Article  CAS  PubMed  Google Scholar 

  9. Chai Y, Jiang X, Ito Y, Bringas P, Han J, Rowitch DH, et al. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 2000;127:1671–1679.

    CAS  PubMed  Google Scholar 

  10. Janebodin K, Horst OV, Ieronimakis N, Balasundaram G, Reesukumal K, Pratumvinit B, et al. Isolation and characterization of neural crest-derived stem cells from dental pulp of neonatal mice. PLoS One 2011;6: e27526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ibarretxe G, Crende O, Aurrekoetxea M, García-Murga V, Etxaniz J, Unda F. Neural crest stem cells from dental tissues: a new hope for dental and neural regeneration. Stem Cells Int 2012;2012:103503.

    PubMed  PubMed Central  Google Scholar 

  12. Arakaki M, Ishikawa M, Nakamura T, Iwamoto T, Yamada A, Fukumoto E, et al. Role of epithelial-stem cell interactions during dental cell differentiation. J Biol Chem 2012;287:10590–10601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thesleff I, Mikkola M. The role of growth factors in tooth development. Int Rev Cytol 2002;217:93–135.

    Article  CAS  PubMed  Google Scholar 

  14. Tziafas D, Smith AJ, Lesot H. Designing new treatment strategies in vital pulp therapy. J Dent 2000;28:77–92.

    Article  CAS  PubMed  Google Scholar 

  15. Deng MJ, Jin Y, Shi JN, Lu HB, Liu Y, He DW, et al. Multilineage differentiation of ectomesenchymal cells isolated from the first branchial arch. Tissue Eng 2004;10:1597–1606.

    Article  CAS  PubMed  Google Scholar 

  16. Ohlstein B, Kai T, Decotto E, Spradling A. The stem cell niche: theme and variations. Curr Opin Cell Biol 2004;16:693–699.

    Article  CAS  PubMed  Google Scholar 

  17. Bai Y, Bai Y, Matsuzaka K, Hashimoto S, Kokubu E, Wang X, et al. Formation of bone-like tissue by dental follicle cells co-cultured with dental papilla cells. Cell Tissue Res 2010;342:221–231.

    Article  PubMed  Google Scholar 

  18. De Rosa A, Tirino V, Paino F, Tartaglione A, Mitsiadis T, Feki A, et al. Amniotic fluid-derived mesenchymal stem cells lead to bone differentiation when cocultured with dental pulp stem cells. Tissue Eng Part A 2011;17:645–653.

    Article  PubMed  Google Scholar 

  19. Yu J, Deng Z, Shi J, Zhai H, Nie X, Zhuang H, et al. Differentiation of dental pulp stem cells into regular-shaped dentin-pulp complex induced by tooth germ cell conditioned medium. Tissue Eng 2006;12:3097–3105.

    Article  CAS  PubMed  Google Scholar 

  20. Aigner T, Stöve J. Collagens—major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair. Adv Drug Deliv Rev 2003;55:1569–1593.

    Article  CAS  PubMed  Google Scholar 

  21. Alexanian AR. Neural stem cells induce bone-marrow-derived mesenchymal stem cells to generate neural stem-like cells via juxtacrine and paracrine interactions. Exp Cell Res 2005;310:383–391.

    Article  CAS  PubMed  Google Scholar 

  22. Sands RW, Mooney DJ. Polymers to direct cell fate by controlling the microenvironment. Curr Opin Biotechnol 2007;18:448–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shin Y, Han S, Jeon JS, Yamamoto K, Zervantonakis IK, Sudo R, et al. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Nat Protoc 2012;7:1247–1259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu J, Chen Q, Liu W, Zhang Y, Lin JM. Cytotoxicity of quantum dots assay on a microfluidic 3D-culture device based on modeling diffusion process between blood vessels and tissues. Lab Chip 2012;12:3474–3480.

    Article  CAS  PubMed  Google Scholar 

  25. Chen Q, Wu J, Zhang Y, Lin Z, Lin JM. Targeted isolation and analysis of single tumor cells with aptamer-encoded microwell array on microfluidic device. Lab Chip 2012;12:5180–5185.

    Article  CAS  PubMed  Google Scholar 

  26. Schirhagl R, Fuereder I, Hall EW, Medeiros BC, Zare RN. Microfluidic purification and analysis of hematopoietic stem cells from bone marrow. Lab Chip 2011;11:3130–3135.

    Article  CAS  PubMed  Google Scholar 

  27. Chen Q, Wu J, Zhang Y, Lin JM. Qualitative and quantitative analysis of tumor cell metabolism via stable isotope labeling assisted microfluidic chip electrospray ionization mass spectrometry. Anal Chem 2012;84:1695–1701.

    Article  CAS  PubMed  Google Scholar 

  28. Gao D, Liu H, Lin JM, Wang Y, Jiang Y. Characterization of drug permeability in Caco-2 monolayers by mass spectrometry on a membranebased microfluidic device. Lab Chip 2013;13:978–985.

    Article  CAS  PubMed  Google Scholar 

  29. Kim C, Lee KS, Bang JH, Kim YE, Kim MC, Oh KW, et al. 3-dimensional cell culture for on-chip differentiation of stem cells in embryoid body. Lab Chip 2011;11:874–882.

    Article  CAS  PubMed  Google Scholar 

  30. Khademhosseini A, Langer R, Borenstein J, Vacanti JP. Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci U S A 2006;103:2480–2487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science 2010;328:1662–1668.

    Article  CAS  PubMed  Google Scholar 

  32. El-Ali J, Sorger PK, Jensen KF. Cells on chips. Nature 2006;442:403–411.

    Article  CAS  PubMed  Google Scholar 

  33. Choi JK, Hwang HI, Jang YJ. The efficiency of the in vitro osteo/dentinogenic differentiation of human dental pulp cells, periodontal ligament cells and gingival fibroblasts. Int J Mol Med 2015;35:161–168.

    CAS  PubMed  Google Scholar 

  34. Min JH, Ko SY, Cho YB, Ryu CJ, Jang YJ. Dentinogenic potential of human adult dental pulp cells during the extended primary culture. Hum Cell 2011;24:43–50.

    Article  CAS  PubMed  Google Scholar 

  35. Ju SM, Jang HJ, Kim KB, Kim J. High-throughput cytotoxicity testing system of acetaminophen using a microfluidic device (MFD) in HepG2 cells. J Toxicol Environ Health A 2015;78:1063–1072.

    Article  CAS  PubMed  Google Scholar 

  36. An D, Kim K, Kim J. Microfluidic system based high throughput drug screening system for curcumin/TRAIL combinational chemotherapy in human prostate cancer PC3 cells. Biomol Ther (Seoul) 2014;22:355–362.

    Article  CAS  Google Scholar 

  37. Kim J, Taylor D, Agrawal N, Wang H, Kim H, Han A, et al. A programmable microfluidic cell array for combinatorial drug screening. Lab Chip 2012;12:1813–1822.

    Article  CAS  PubMed  Google Scholar 

  38. Wang H, Kim J, Jayaraman A, Han A. Microfluidic geometric meteringbased multi-reagent mixture generator for robust live cell screening array. Biomed Microdevices 2014;16:887–896.

    Article  PubMed  Google Scholar 

  39. Tucker A, Sharpe P. The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet 2004;5:499–508.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang YD, Chen Z, Song YQ, Liu C, Chen YP. Making a tooth: growth factors, transcription factors, and stem cells. Cell Res 2005;15:301–316.

    Article  CAS  PubMed  Google Scholar 

  41. Lerner UH, Hänström L, Sjäström S. Stimulation of bone resorption and cell proliferation in vitro by human gingival fibroblasts from patients with periodontal disease. Bone Miner 1990;10:225–242.

    Article  CAS  PubMed  Google Scholar 

  42. Sjöström S, Hänström L, Lerner UH. The bone resorbing activity released by gingival fibroblasts isolated from patients with periodontitis is independent of interleukin-1. J Periodontal Res 2000;35:74–84.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young-Joo Jang or Jeongyun Kim.

Additional information

These authors equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, KJ., Ju, S.M., Jang, YJ. et al. Indirect co-culture of stem cells from human exfoliated deciduous teeth and oral cells in a microfluidic platform. Tissue Eng Regen Med 13, 428–436 (2016). https://doi.org/10.1007/s13770-016-0005-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-016-0005-2

Key Words

Navigation