Skip to main content

Advertisement

Log in

Photothermal therapy with gold nanoparticles as an anticancer medication

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Over the past few decades, gold nanoparticles and diverse gold nano-forms have been considered for both cancer therapy and bioimaging due to their surface plasmon resonance effect and its capability of loading contrast agent. This effect enables thermal destruction of cells or organs by drastically elevating temperature when exposed to a specific energy of visible light either near infrared light. In addition, chemical modifications of the surfaces of gold nanoparticles or nano-forms are well known. Sulfur-containing functional groups of biomolecules or polymers can be easily conjugated with Aurum atoms on the surface of gold nanoparticles. There are also various nano-forms with different shapes and sizes derived from gold nanoparticles such as the nanosphere, nanorod, nanocage, nanoshell, and nanoporous gold disks. The various forms of nano-scaled gold materials have unique properties that can be used as carrier, simultaneously thermal destruction agent. Its properties of the materials are able to applied to a number of desired purposes. Regardless of the physicochemical properties of gold nanoparticles, they present several challenges, such as the instance energy penetrating depth availability aspect required for gold nanoparticles to enter organs and the cellular toxicity issues of nano-scaled gold particles in the body. The purpose of this review is to introduce the advantages using gold nanoparticles-based materials and its diverse approaches to several types of cancer therapies due to its distinct properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abadeer NS, Murphy CJ (2016) Recent progress in cancer thermal therapy using gold nanoparticles. J Phys Chem C 120:4691–4716

    Article  CAS  Google Scholar 

  • Allison RR, Bagnato VS, Sibata CH (2010) Future of oncologic photodynamic therapy. Future Oncol 6:929–940

    Article  CAS  PubMed  Google Scholar 

  • Ayala-Orozco C, Urban C, Knight MW, Urban AS, Neumann O, Bishnoi SW, Mukherjee S, Goodman AM, Charron H, Mitchell T, Shea M, Roy R, Nanda S, Schiff R, Halas NJ, Joshi A (2014) Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells. ACS Nano 8:6372–6381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckham JT, Wilmink GJ, Mackanos MA, Takahashi K, Contag CH, Takahashi T, Jansen ED (2008) Role of HSP70 in cellular thermotolerance. Lasers Surg Med 40:704–715

    Article  PubMed  Google Scholar 

  • Chen HJ, Shao L, Ming TA, Sun ZH, Zhao CM, Yang BC, Wang JF (2010) Understanding the photothermal conversion efficiency of gold nanocrystals. Small 6:2272–2280

    Article  CAS  PubMed  Google Scholar 

  • Cole JR, Mirin NA, Knight MW, Goodrich GP, Halas NJ (2009) Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications. J Phys Chem C 113:12090–12094

    Article  CAS  Google Scholar 

  • Dewey WCR, Diederich CJ (2009) Hyperthermia classic commentary: ‘Arrhenius relationships from the molecule and cell to the clinic’ by William Dewey, Int. J. Hyperthermia, 10:457-483, 1994. Int J Hyperth 25:21–24

    Article  Google Scholar 

  • Diaz-Lopez R, Tsapis N, Fattal E (2010) Liquid perfluorocarbons as contrast agents for ultrasonography and F-19-MRI. Pharm Res 27:1–16

    Article  CAS  PubMed  Google Scholar 

  • Dixit S, Miller K, Zhu Y, McKinnon E, Novak T, Kenney ME, Broome AM (2015) Dual receptor-targeted theranostic nanoparticles for localized delivery and activation of photodynamic therapy drug in glioblastomas. Mol Pharm 12:3250–3260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faulds K, Barbagallo RP, Keer JT, Smith WE, Graham D (2004) SERRS as a more sensitive technique for the detection of labelled oligonucleotides compared to fluorescence. Analyst 129:567–568

    Article  CAS  PubMed  Google Scholar 

  • Gao YP, Li YS, Wang Y, Chen Y, Gu JL, Zhao WR, Ding J, Shi JL (2015) Controlled synthesis of multilayered gold nanoshells for enhanced photothermal therapy and SERS detection. Small 11:77–83

    Article  CAS  PubMed  Google Scholar 

  • Habash RW, Bansal R, Krewski D, Alhafid HT (2006) Thermal therapy, part 1: an introduction to thermal therapy. Crit Rev Biomed Eng 34:459–489

    Article  PubMed  Google Scholar 

  • Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess H (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hemat 43:33–56

    Article  Google Scholar 

  • Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. P Natl Acad Sci USA 100:13549–13554

    Article  CAS  Google Scholar 

  • Huang XH, Jain PK, El-Sayed IH, El-Sayed MA (2006) Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem Photobiol 82:412–417

    Article  CAS  PubMed  Google Scholar 

  • Huang P, Lin J, Li WW, Rong PF, Wang Z, Wang SJ, Wang XP, Sun XL, Aronova M, Niu G, Leapman RD, Nie ZH, Chen XY (2013) Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy. Angew Chem Int Ed 52:13958–13964

    Article  CAS  Google Scholar 

  • Huff TB, Tong L, Zhao Y, Hansen MN, Cheng JX, Wei A (2007) Hyperthermic effects of gold nanorods on tumor cells. Nanomed Nanotechnol Biol Med 2:125–132

    CAS  Google Scholar 

  • Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    Article  CAS  PubMed  Google Scholar 

  • Jain S, Hirst DG, O’Sullivan JM (2012) Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 85:101–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001) Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 13:1389–1393

    Article  CAS  Google Scholar 

  • Kang S, Bhang SH, Hwang S, Yoon JK, Song J, Jang HK, Kim S, Kim BS (2015) Mesenchymal stem cells aggregate and deliver gold nanoparticles to tumors for photothermal therapy. ACS Nano 9:9678–9690

    Article  CAS  PubMed  Google Scholar 

  • Ke HT, Wang JR, Tong S, Jin YS, Wang SM, Qu EZ, Bao G, Dai ZF (2014) Gold nanoshelled liquid perfluorocarbon magnetic nanocapsules: a nanotheranostic platform for bimodal ultrasound/magnetic resonance imaging guided photothermal tumor ablation. Theranostics 4:12–23

    Article  CAS  Google Scholar 

  • Kennedy LC (2011) Modulating gold nanoparticle in vivo delivery for photothermal therapy applications using a T Cell Delivery System. Rice University

  • Lin AY, Young JK, Nixon AV, Drezek RA (2014) Encapsulated Fe3O4/Ag complexed cores in hollow gold nanoshells for enhanced theranostic magnetic resonance imaging and photothermal therapy. Small 10:3246–3251

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Zi X, Zhao Y, Mascarenhas D, Pollak M (2001) Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst 93:1852–1857

    Article  CAS  PubMed  Google Scholar 

  • Madsen SJ, Baek SK, Makkouk AR, Krasieva T, Hirschberg H (2012) Macrophages as cell-based delivery systems for nanoshells in photothermal therapy. Ann Biomed Eng 40:507–515

    Article  PubMed  Google Scholar 

  • Nagy P, Friedlander E, Tanner M, Kapanen AI, Carraway KL, Isola J, Jovin TM (2005) Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Res 65:473–482

    CAS  PubMed  Google Scholar 

  • Newlands ES, Stevens MFG, Wedge SR, Wheelhouse RT, Brock C (1997) Temozolomide: a review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat Rev 23:35–61

    Article  CAS  PubMed  Google Scholar 

  • O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171–176

    Article  PubMed  Google Scholar 

  • Pattani VP, Tunnell JW (2012) Nanoparticle-mediated photothermal therapy: a comparative study of heating for different particle types. Laser Surg Med 44:675–684

    Article  Google Scholar 

  • Richardson HH, Carlson MT, Tandler PJ, Hernandez P, Govorov AO (2009) Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett 9:1139–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson CA, Evans DH, Abrahamse H (2009) Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B 96:1–8

    Article  CAS  PubMed  Google Scholar 

  • Rousseau A, Mokhtari K, Duyckaerts C (2008) The 2007 WHO classification of tumors of the central nervous system—what has changed? Curr Opin Neurol 21:720–727

    Article  PubMed  Google Scholar 

  • Santos GM, Zhao FS, Zeng JB, Shih WC (2014) Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release. Nanoscale 6:5718–5724

    Article  CAS  PubMed  Google Scholar 

  • Setua S, Ouberai M, Piccirillo SG, Watts C, Welland M (2014) Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma. Nanoscale 6:10865–10873

    Article  CAS  PubMed  Google Scholar 

  • Sonnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson O, Mulvaney P (2002) Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett 88:077402

    Article  CAS  PubMed  Google Scholar 

  • van der Zee J, Gonzalez DG, van Rhoon GC, van Dijk JDP, van Putten WLJ, Hart AAM, Grp DDH (2000) Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Lancet 355:1119–1125

    Article  PubMed  Google Scholar 

  • Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag PM (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3:487–497

    Article  CAS  PubMed  Google Scholar 

  • Yakes FM, Chinratanalab W, Ritter CA, King W, Seelig S, Arteaga CL (2002) Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt Is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res 62:4132–4141

    CAS  PubMed  Google Scholar 

  • Zeng J, Goldfeld D, Xia YN (2013) A plasmon-assisted optofluidic (PAOF) system for measuring the photothermal conversion efficiencies of gold nanostructures and controlling an electrical switch. Angew Chem Int Ed 52:4169–4173

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a Mid-Career Research program grant (NRF-2015R1A2A1A05001832) through the National Research Foundation of Korea (NRF) funded by the Korean government.

Conflicts of the interest

These authors (H.S. Kim and D.Y. Lee) declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Yun Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.S., Lee, D.Y. Photothermal therapy with gold nanoparticles as an anticancer medication. Journal of Pharmaceutical Investigation 47, 19–26 (2017). https://doi.org/10.1007/s40005-016-0292-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-016-0292-6

Keywords

Navigation