Skip to main content

Advertisement

Log in

Recent advances of nanocellulose in drug delivery systems

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Background

Nanocellulose, which possesses great physical, chemical, and biological properties, is a natural polymer derived from widely available native cellulose. It has outstanding properties such as high mechanical strength, stiffness, low weight, biocompatibility, and renewability, which are beneficial for the design of advanced drug delivery systems, as either an excipient or a carrier.

Area covered

This review introduces three types of nanocellulose: cellulose nanocrystals, cellulose nanofibers, and bacterial cellulose. Their physical and chemical properties along with their methods of preparation are also compared. Recent studies of nanocellulose for various drug delivery applications are summarized and discussed. Selected nanocellulose studies with significant findings for oral, ocular, intratumoral, topical, and transdermal delivery are also emphasized.

Expert opinion

Nanocellulose has potential for drug delivery applications due to its high surface area-to-volume ratio and high polymerization, which provide nanocellulose with a high loading and binding capacity for active pharmaceutical ingredients, enabling the control of the drug release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abba M, Ibrahim Z, Chong CS, Zawawi NA, Kadir MRA, Yusof AHM, Abd Razak SIJF (2019) Transdermal delivery of crocin using bacterial nanocellulose membrane. Fibers Polym 20:2025–2031

    CAS  Google Scholar 

  • Abbott AP, Bell TJ, Handa S, Stoddart BJGC (2006) Cationic functionalisation of cellulose using a choline based ionic liquid analogue. Green Chem 8:784–786

    CAS  Google Scholar 

  • Abo-Elseoud WS, Hassan ML, Sabaa MW, Basha M, Hassan EA, Fadel SM (2018) Chitosan nanoparticles/cellulose nanocrystals nanocomposites as a carrier system for the controlled release of repaglinide. Int J Biol Macromol 111:604–613

    CAS  PubMed  Google Scholar 

  • Abushammala H, Krossing I, Laborie M-P (2015) Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohydr Ploym 134:609–616

    CAS  Google Scholar 

  • Agrawal AK, Das M, Jain SJ (2012) In situ gel systems as ‘smart’carriers for sustained ocular drug delivery. Expert opin Drug Deliv 9:383–402

    CAS  PubMed  Google Scholar 

  • Akhlaghi SP, Tiong D, Berry RM, Tam KC (2014) Comparative release studies of two cationic model drugs from different cellulose nanocrystal derivatives. Eur J Pharm Biopharm 88:207–215

    CAS  PubMed  Google Scholar 

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues–Wheat straw and soy hulls. Bioresour Technol 99:1664–1671

    CAS  PubMed  Google Scholar 

  • Alexander A, Dwivedi S, Giri TK, Saraf S, Saraf S, Tripathi DK (2012) Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J Control Release 164:26–40

    CAS  PubMed  Google Scholar 

  • Alkhatib Y, Dewaldt M, Moritz S, Nitzsche R, Kralisch D, Fischer D (2017) Controlled extended octenidine release from a bacterial nanocellulose/Poloxamer hybrid system. Eur J Pharm Biopharm 112:164–176

    CAS  PubMed  Google Scholar 

  • Amin KNM, Annamalai PK, Morrow IC, Martin D (2015) Production of cellulose nanocrystals via a scalable mechanical method. RSC Adv 5:57133–57140

    Google Scholar 

  • Antczak T (2012) Nanotechnology-methods of manufacturing cellulose nanofibres. Fibres Text East Eur 20:91

    Google Scholar 

  • Anžlovar A, Kunaver M, Krajnc A, Žagar E (2018) Nanocomposites of LLDPE and surface-modified cellulose nanocrystals prepared by melt processing. Molecules 23:1782

    PubMed Central  Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142:75–82

    CAS  Google Scholar 

  • Babu RP, O’connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Progress Biomater 2:8

    Google Scholar 

  • Badshah M, Ullah H, Khan SA, Park JK, Khan T (2017) Preparation, characterization and in-vitro evaluation of bacterial cellulose matrices for oral drug delivery. Cellulose 24:5041–5052

    CAS  Google Scholar 

  • Barbosa AM, Robles E, Ribeiro JS, Lund RG, Carreño NL, Labidi J (2016) Cellulose nanocrystal membranes as excipients for drug delivery systems. Materials 9:1002

    PubMed Central  Google Scholar 

  • Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast 24:1259–1268

    CAS  Google Scholar 

  • Bian H, Chen L, Dai H, Zhu J (2017a) Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid. Carbohydr Polym 167:167–176

    CAS  PubMed  Google Scholar 

  • Bian H, Chen L, Gleisner R, Dai H, Zhu J (2017b) Producing wood-based nanomaterials by rapid fractionation of wood at 80 C using a recyclable acid hydrotrope. Green Chem 19:3370–3379

    CAS  Google Scholar 

  • Bisht R, Mandal A, Jaiswal JK, Rupenthal ID (2018) Nanocarrier mediated retinal drug delivery: overcoming ocular barriers to treat posterior eye diseases. Wiley Interdiscip Rev Nanomed Nanotechnol 10:e1473

    Google Scholar 

  • Cacicedo ML, Islan GA, León IE, Alvarez VA, Chourpa I, Allard-Vannier E, García-Aranda N, Díaz-Riascos Z, Fernández Y, Schwartz S Jr (2018) Bacterial cellulose hydrogel loaded with lipid nanoparticles for localized cancer treatment. Cooloids Surf B 170:596–608

    CAS  Google Scholar 

  • Camarero Espinosa S, Kuhnt T, Foster EJ, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromol 14:1223–1230

    CAS  Google Scholar 

  • Carrillo CA, Laine J, Rojas OJ (2014) Microemulsion systems for fiber deconstruction into cellulose nanofibrils. ACS Appl Mater Interfaces 6:22622–22627

    CAS  PubMed  Google Scholar 

  • Chao Y-P, Sugano Y, Kouda T, Yoshinaga F, Shoda M (1997) Production of bacterial cellulose by Acetobacter xylinum with an air-lift reactor. Biotechnol Tech 11:829–832

    CAS  Google Scholar 

  • Chauhan VS, Chakrabarti SK (2012) Use of nanotechnology for high performance cellulosic and papermaking products. Cell Chem Technol 46:389

    CAS  Google Scholar 

  • Chen L, Wang Q, Hirth K, Baez C, Agarwal UP, Zhu J (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22:1753–1762

    CAS  Google Scholar 

  • Chen L, Zhu J, Baez C, Kitin P, Elder T (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18:3835–3843

    CAS  Google Scholar 

  • Chen Y, He Y, Fan D, Han Y, Li G, Wang S (2017) An efficient method for cellulose nanofibrils length shearing via environmentally friendly mixed cellulase pretreatment. J Nanomater. https://doi.org/10.1155/2017/1591504

    Article  Google Scholar 

  • Chen X-Q, Deng X-Y, Shen W-H, Jia M-Y (2018) Preparation and characterization of the spherical nanosized cellulose by the enzymatic hydrolysis of pulp fibers. Carbohydr Polym 181:879–884

    CAS  PubMed  Google Scholar 

  • Cheng M, Qin Z, Chen Y, Hu S, Ren Z, Zhu M (2017a) Efficient extraction of cellulose nanocrystals through hydrochloric acid hydrolysis catalyzed by inorganic chlorides under hydrothermal conditions. ACS Sustain Chem Eng 5:4656–4664

    CAS  Google Scholar 

  • Cheng M, Qin Z, Chen Y, Liu J, Ren Z (2017b) Facile one-step extraction and oxidative carboxylation of cellulose nanocrystals through hydrothermal reaction by using mixed inorganic acids. Cellulose 24:3243–3254

    CAS  Google Scholar 

  • Costa AF, Almeida FC, Vinhas GM, Sarubbo LA (2017) Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Front Microbiol 8:2027

    PubMed  PubMed Central  Google Scholar 

  • de Lima Fontes FM, Meneguin AB, Tercjak A, Gutierrez J, Cury BSF, Dos Santos AM, Ribeiro SJ, Barud HS (2018) Effect of in situ modification of bacterial cellulose with carboxymethylcellulose on its nano/microstructure and methotrexate release properties. Carbohydr Polym 179:126–134

    Google Scholar 

  • De Olyveira GM, Costa LMM, Dos Santos C, Dos Santos Riccardi ML, Daltro PB, Basmaji P, De Cerqueira DaltroGuastaldi GAC (2016) Nanobiomaterials in soft tissue engineering. Elsevier, Amsterdam, pp 57–82

    Google Scholar 

  • Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, De Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102:1988–1997

    CAS  PubMed  Google Scholar 

  • Du H, Liu C, Mu X, Gong W, Lv D, Hong Y, Si C, Li B (2016) Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose 23:2389–2407

    CAS  Google Scholar 

  • Du L, Wang J, Zhang Y, Qi C, Wolcott MP, Yu Z (2017) A co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals from ball-milled woods. Bioresour Technol 238:254–262

    CAS  PubMed  Google Scholar 

  • Dufresne A, Cavaillé JY, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194

    CAS  Google Scholar 

  • Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch–cellulose microfibril composites. J Appl Polym Sci 76:2080–2092

    CAS  Google Scholar 

  • Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227

    CAS  Google Scholar 

  • Dufresne A (2017) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter GmbH & Co KG, Berlin

    Google Scholar 

  • Eyholzer C, Borges De Couraça A, Duc F, Bourban P, Tingaut P, Zimmermann T, Manson J, Oksman K (2011) Biocomposite hydrogels with carboxymethylated, nanofibrillated cellulose powder for replacement of the nucleus pulposus. Biomacromol 12:1419–1427

    CAS  Google Scholar 

  • Fakes MG, Vakkalagadda BJ, Qian F, Desikan S, Gandhi RB, Lai C, Hsieh A, Franchini MK, Toale H, Brown J (2009) Enhancement of oral bioavailability of an HIV-attachment inhibitor by nanosizing and amorphous formulation approaches. Int J Pharm 370:167–174

    CAS  PubMed  Google Scholar 

  • Filson PB, Dawson-Andoh BE, Schwegler-Berry D (2009) Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem 11:1808–1814

    CAS  Google Scholar 

  • Gao J, Li Q, Chen W, Liu Y, Yu H (2014) Self-assembly of nanocellulose and indomethacin into hierarchically ordered structures with high encapsulation efficiency for sustained release applications. ChemPlusChem 79:725–731

    CAS  Google Scholar 

  • Gorgieva S, Trček J (2019) Bacterial cellulose: production, modification and perspectives in biomedical applications. Nanomaterials 9:1352

    CAS  PubMed Central  Google Scholar 

  • Gupta A, Briffa SM, Swingler S, Gibson H, Kannappan V, Adamus G, Kowalczuk M, Martin C, Radecka I (2020) Synthesis of silver nanoparticles using curcumin-cyclodextrins loaded into bacterial cellulose-based hydrogels for wound dressing applications. Biomacromol 21:1802–1811

    CAS  Google Scholar 

  • Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542

    CAS  PubMed  Google Scholar 

  • Hassan ML, Hassan EA, Oksman KN (2011) Effect of pretreatment of bagasse fibers on the properties of chitosan/microfibrillated cellulose nanocomposites. J Mater Sci 46:1732–1740

    CAS  Google Scholar 

  • Hasan A, Waibhaw G, Tiwari S, Dharmalingam K, Shukla I, Pandey LM (2017) Fabrication and characterization of chitosan, polyvinylpyrrolidone, and cellulose nanowhiskers nanocomposite films for wound healing drug delivery application. J Biomed Mater Res A 105:2391–2404

    CAS  PubMed  Google Scholar 

  • Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12:1448–1453

    CAS  Google Scholar 

  • Henriksson M, Henriksson G, Berglund L, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441

    CAS  Google Scholar 

  • Hietala M, Rollo P, Kekäläinen K, Oksman K (2014) Extrusion processing of green biocomposites: compounding, fibrillation efficiency, and fiber dispersion. J Appl Polym Sci. https://doi.org/10.1002/app.39981

    Article  Google Scholar 

  • Ho TTT, Abe K, Zimmermann T, Yano H (2015) Nanofibrillation of pulp fibers by twin-screw extrusion. Cellulose 22:421–433

    CAS  Google Scholar 

  • Huang L, Chen X, Nguyen TX, Tang H, Zhang L, Yang G (2013) Nano-cellulose 3D-networks as controlled-release drug carriers. J Mater Chem 1:2976–2984

    CAS  Google Scholar 

  • Ifuku S, Tsuji M, Morimoto M, Saimoto H, Yano H (2009) Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers. Biomacromol 10:2714–2717

    CAS  Google Scholar 

  • Iskak NAM, Julkapli NM, Hamid SBA (2017) Understanding the effect of synthesis parameters on the catalytic ionic liquid hydrolysis process of cellulose nanocrystals. Cellulose 24:2469–2481

    Google Scholar 

  • Islam MT, Alam MM, Patrucco A, Montarsolo A, Zoccola M (2014) Preparation of nanocellulose: a review. AATCC J Res 1:17–23

    CAS  Google Scholar 

  • Jackson JK, Letchford K, Wasserman BZ, Ye L, Hamad WY, Burt HM (2011) The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int J Nanomed 6:321

    CAS  Google Scholar 

  • Jiang F, Hsieh Y-L (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40

    CAS  PubMed  Google Scholar 

  • Kamel S, Ali N, Jahangir K, Shah S, El-Gendy A (2008) Pharmaceutical significance of cellulose: a review. Exp Polym Lett 2:758–778

    CAS  Google Scholar 

  • Kim C-W, Kim D-S, Kang S-Y, Marquez M, Joo YL (2006) Structural studies of electrospun cellulose nanofibers. Polymer 47:5097–5107

    CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    CAS  Google Scholar 

  • Kondo T, Kose R, Naito H, Kasai W (2014) Aqueous counter collision using paired water jets as a novel means of preparing bio-nanofibers. Carbohydr Polym 112:284–290

    CAS  PubMed  Google Scholar 

  • Kose R, Mitani I, Kasai W, Kondo T (2011) “Nanocellulose” as a single nanofiber prepared from pellicle secreted by Gluconacetobacter xylinus using aqueous counter collision. Biomacromol 12:716–720

    CAS  Google Scholar 

  • Lazarini SC, De Aquino R, Amaral AC, Corbi FC, Corbi PP, Barud HS, Lustri WR (2016) Characterization of bilayer bacterial cellulose membranes with different fiber densities: a promising system for controlled release of the antibiotic ceftriaxone. Cellulose 23:737–748

    CAS  Google Scholar 

  • Lee H, Sundaram J, Zhu L, Zhao Y, Mani S (2018) Improved thermal stability of cellulose nanofibrils using low-concentration alkaline pretreatment. Carbohydr Polym 181:506–513

    CAS  PubMed  Google Scholar 

  • Li W, Yue J, Liu S (2012) Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly (vinyl alcohol) composites. Ultrason Sonochem 19:479–485

    CAS  PubMed  Google Scholar 

  • Li B, Xu W, Kronlund D, Määttänen A, Liu J, Smått J-H, Peltonen J, Willför S, Mu X, Xu C (2015) Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation. Carbohydr Polym 133:605–612

    CAS  PubMed  Google Scholar 

  • Li P, Sirviö JA, Haapala A, Liimatainen H (2017) Cellulose nanofibrils from nonderivatizing urea-based deep eutectic solvent pretreatments. ACS Appl Mater Interfaces 9:2846–2855

    CAS  Google Scholar 

  • Li N, Lu W, Yu J, Xiao Y, Liu S, Gan L, Huang J (2018) Rod-like cellulose nanocrystal/cis-aconityl-doxorubicin prodrug: a fluorescence-visible drug delivery system with enhanced cellular uptake and intracellular drug controlled release. Mater Sci Eng C 91:179–189

    CAS  Google Scholar 

  • Liimatainen H, Visanko M, Sirviö JA, Hormi OE, Niinimaki J (2012) Enhancement of the nanofibrillation of wood cellulose through sequential periodate–chlorite oxidation. Biomacromol 13:1592–1597

    CAS  Google Scholar 

  • Liimatainen H, Visanko M, Sirviö J, Hormi O, Niinimäki J (2013) Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment. Cellulose 20:741–749

    CAS  Google Scholar 

  • Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4:3274–3294

    CAS  PubMed  Google Scholar 

  • Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325

    CAS  Google Scholar 

  • Lin S-P, Calvar IL, Catchmark JM, Liu J-R, Demirci A, Cheng K-C (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20:2191–2219

    CAS  Google Scholar 

  • Liu L, Yao W, Rao Y, Lu X, Gao J (2017a) pH-Responsive carriers for oral drug delivery: challenges and opportunities of current platforms. Drug Deliv 24:569–581

    CAS  PubMed  Google Scholar 

  • Liu Q, Lu Y, Aguedo M, Jacquet N, Ouyang C, He W, Yan C, Bai W, Guo R, Goffin D (2017b) Isolation of high-purity cellulose nanofibers from wheat straw through the combined environmentally friendly methods of steam explosion, microwave-assisted hydrolysis, and microfluidization. ACS Sustain Chem Eng 5:6183–6191

    CAS  Google Scholar 

  • Liu Y, Guo B, Xia Q, Meng J, Chen W, Liu S, Wang Q, Liu Y, Li J, Yu H (2017c) Efficient cleavage of strong hydrogen bonds in cotton by deep eutectic solvents and facile fabrication of cellulose nanocrystals in high yields. ACS Sustain Chem Eng 5:7623–7631

    CAS  Google Scholar 

  • Löbmann K, Wohlert J, Müllertz A, Wågberg L, Svagan AJ (2017) Cellulose nanopaper and nanofoam for patient-tailored drug delivery. Adv Mater Interfaces 4:1600655

    Google Scholar 

  • Lu H, Jiang X (2014) Structure and properties of bacterial cellulose produced using a trickling bed reactor. Appl Biochem Biotechnol 172:3844–3861

    CAS  PubMed  Google Scholar 

  • Mao J, Osorio-Madrazo A, Laborie M-P (2013) Preparation of cellulose I nanowhiskers with a mildly acidic aqueous ionic liquid: reaction efficiency and whiskers attributes. Cellulose 20:1829–1840

    CAS  Google Scholar 

  • Mao J, Heck B, Reiter G, Laborie M-P (2015) Cellulose nanocrystals’ production in near theoretical yields by 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim] HSO4)–mediated hydrolysis. Carbohydr Polym 117:443–451

    CAS  PubMed  Google Scholar 

  • Mascheroni E, Rampazzo R, Ortenzi MA, Piva G, Bonetti S, Piergiovanni L (2016) Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials. Cellulose 23:779–793

    CAS  Google Scholar 

  • Mauricio MR, Da Costa PG, Haraguchi SK, Guilherme MR, Muniz EC, Rubira AF (2015) Synthesis of a microhydrogel composite from cellulose nanowhiskers and starch for drug delivery. Carbohydr Polym 115:715–722

    CAS  PubMed  Google Scholar 

  • Medhi P, Olatunji O, Nayak A, Uppuluri CT, Olsson RT, Nalluri BN, Das DB (2017) Lidocaine-loaded fish scale-nanocellulose biopolymer composite microneedles. Aaps PharmSciTech 18:1488–1494

    CAS  PubMed  Google Scholar 

  • Miao J, Yu Y, Jiang Z, Zhang L (2016) One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid. Cellulose 23:1209–1219

    CAS  Google Scholar 

  • Mohan EC, Kandukuri JM, Allenki VJJPR (2009) Preparation and evaluation of in-situ-gels for ocular drug delivery. J Pharm Res 2:1089–1094

    CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    CAS  PubMed  Google Scholar 

  • Nakagaito A, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys 78:547–552

    CAS  Google Scholar 

  • Nakagaito AN, Ikenaga K, Takagi H (2015) Cellulose nanofiber extraction from grass by a modified kitchen blender. Mod Phys Lett B 29:1540039

    Google Scholar 

  • Nalamothu V (2015) Topical delivery – the importance of the right formulation in topical drug development. Drug Dev Deliv Jan/Feb(15):1–4

    Google Scholar 

  • Nechyporchuk O, Pignon F, Belgacem MN (2015) Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process. J Mater Sci 50:531–541

    CAS  Google Scholar 

  • Ninomiya K, Abe M, Tsukegi T, Kuroda K, Tsuge Y, Ogino C, Taki K, Taima T, Saito J, Kimizu M (2018) Lignocellulose nanofibers prepared by ionic liquid pretreatment and subsequent mechanical nanofibrillation of bagasse powder: application to esterified bagasse/polypropylene composites. Carbohydr Polym 182:8–14

    CAS  PubMed  Google Scholar 

  • Niu F, Li M, Huang Q, Zhang X, Pan W, Yang J, Li J (2017) The characteristic and dispersion stability of nanocellulose produced by mixed acid hydrolysis and ultrasonic assistance. Carbohydr Polym 165:197–204

    CAS  PubMed  Google Scholar 

  • Novo LP, Bras J, García A, Belgacem N, Curvelo A (2015) Subcritical water: a method for green production of cellulose nanocrystals. ACS Sustain Chem Eng 3:2839–2846

    CAS  Google Scholar 

  • Novo LP, Bras J, García A, Belgacem N, Da Silva Curvelo A (2016) A study of the production of cellulose nanocrystals through subcritical water hydrolysis. Ind Crops Prod 93:88–95

    CAS  Google Scholar 

  • Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromol 11:1696–1700

    CAS  Google Scholar 

  • Onofrei M, Filimon A (2016) Cellulose-based hydrogels: designing concepts, properties, and perspectives for biomedical and environmental applications. Polym Sci Res Adv Pract Appl Educ Aspects 108–120

  • Orasugh JT, Dutta S, Das D, Pal C, Zaman A, Das S, Dutta K, Banerjee R, Ghosh SK (2019a) Sustained release of ketorolac tromethamine from poloxamer 407/cellulose nanofibrils graft nanocollagen based ophthalmic formulations. Int J Biol Macromol 140:441–453

    CAS  PubMed  Google Scholar 

  • Orasugh JT, Sarkar G, Saha NR, Das B, Bhattacharyya A, Das S, Mishra R, Roy I, Chattoapadhyay A, Ghosh SK (2019b) Effect of cellulose nanocrystals on the performance of drug loaded in situ gelling thermo-responsive ophthalmic formulations. Int J Biol Macromol 124:235–245

    CAS  PubMed  Google Scholar 

  • Patchan M, Graham J, Xia Z, Maranchi J, Mccally R, Schein O, Elisseeff JH, Trexler M (2013) Synthesis and properties of regenerated cellulose-based hydrogels with high strength and transparency for potential use as an ocular bandage. Mater Sci Eng C 33:3069–3076

    CAS  Google Scholar 

  • Peng BL, Dhar N, Liu H, Tam K (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191–1206

    CAS  Google Scholar 

  • Peyre J, Pääkkönen T, Reza M, Kontturi E (2015) Simultaneous preparation of cellulose nanocrystals and micron-sized porous colloidal particles of cellulose by TEMPO-mediated oxidation. Green Chem 17:808–811

    CAS  Google Scholar 

  • Plackett D, Letchford K, Jackson J, Burt H (2014) A review of nanocellulose as a novel vehicle for drug delivery. Nord Pulp Paper Res J 29:105–118

    CAS  Google Scholar 

  • Plappert SF, Liebner FW, Konnerth J, Nedelec J-M (2019) Anisotropic nanocellulose gel–membranes for drug delivery: tailoring structure and interface by sequential periodate–chlorite oxidation. Carbohydr Polym 226:115306

    CAS  PubMed  Google Scholar 

  • Rahimi M, Shojaei S, Safa KD, Ghasemi Z, Salehi R, Yousefi B, Shafiei-Irannejad V (2017) Biocompatible magnetic tris (2-aminoethyl) amine functionalized nanocrystalline cellulose as a novel nanocarrier for anticancer drug delivery of methotrexate. New J Chem 41:2160–2168

    CAS  Google Scholar 

  • Rani MU, Rastogi NK, Appaiah KA (2011) Statistical optimization of medium composition for bacterial cellulose production by Gluconacetobacter hansenii UAC09 using coffee cherry husk extract–an agro-industry waste. J Microbiol Biotechnol 21:739–745.

    CAS  PubMed  Google Scholar 

  • Rao KM, Kumar A, Han SS (2017) Poly (acrylamidoglycolic acid) nanocomposite hydrogels reinforced with cellulose nanocrystals for pH-sensitive controlled release of diclofenac sodium. Polym Testing 64:175–182

    CAS  Google Scholar 

  • Saïdi L, Vilela C, Oliveira H, Silvestre AJ, Freire CS (2017) Poly (N-methacryloyl glycine)/nanocellulose composites as pH-sensitive systems for controlled release of diclofenac. Carbohydr Polym 169:357–365

    PubMed  Google Scholar 

  • Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromol 7:1687–1691

    CAS  Google Scholar 

  • Sarkar G, Orasugh JT, Saha NR, Roy I, Bhattacharyya A, Chattopadhyay AK, Rana D, Chattopadhyay D (2017) Cellulose nanofibrils/chitosan based transdermal drug delivery vehicle for controlled release of ketorolac tromethamine. New J Chem 41:15312–15319

    CAS  Google Scholar 

  • Serafica G, Mormino R, Bungay H (2002) Inclusion of solid particles in bacterial cellulose. Appl Microbiol Biotechnol 58:756–760

    CAS  PubMed  Google Scholar 

  • Siqueira G, Tapin-Lingua S, Bras J, Da Silva PD, Dufresne A (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17:1147–1158

    CAS  Google Scholar 

  • Siró I, Plackett D, Hedenqvist M, Ankerfors M, Lindström T (2011) Highly transparent films from carboxymethylated microfibrillated cellulose: the effect of multiple homogenization steps on key properties. J Appl Polym Sci 119:2652–2660

    Google Scholar 

  • Sirviö JA, Kolehmainen A, Visanko M, Liimatainen H, Niinimäki J, Hormi OE (2014) Strong, self-standing oxygen barrier films from nanocelluloses modified with regioselective oxidative treatments. ACS Appl Mater Interfaces 6:14384–14390

    PubMed  Google Scholar 

  • Song Y, Sun Y, Zhang X, Zhou J, Zhang L (2008) Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers. Biomacromol 9:2259–2264

    CAS  Google Scholar 

  • Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111

    CAS  Google Scholar 

  • Sucaldito MR, Camacho DH (2017) Characteristics of unique HBr-hydrolyzed cellulose nanocrystals from freshwater green algae (Cladophora rupestris) and its reinforcement in starch-based film. Carbohydr Polym 169:315–323

    CAS  PubMed  Google Scholar 

  • Svagan AJ, Benjamins J-W, Al-Ansari Z, Shalom DB, Müllertz A, Wågberg L, Löbmann K (2016) Solid cellulose nanofiber based foams–towards facile design of sustained drug delivery systems. J Control Release 244:74–82

    CAS  PubMed  Google Scholar 

  • Tan XY, Abd Hamid SB, Lai CW (2015) Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass Bioenergy 81:584–591

    CAS  Google Scholar 

  • Tang Y, Shen X, Zhang J, Guo D, Kong F, Zhang N (2015) Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication. Carbohydr Polym 125:360–366

    CAS  PubMed  Google Scholar 

  • Tarrés Q, Delgado-Aguilar M, Pèlach M, González I, Boufi S, Mutjé P (2016) Remarkable increase of paper strength by combining enzymatic cellulose nanofibers in bulk and TEMPO-oxidized nanofibers as coating. Cellulose 23:3939–3950

    Google Scholar 

  • Thomas D, Latha M, Thomas KK (2018) Synthesis and in vitro evaluation of alginate-cellulose nanocrystal hybrid nanoparticles for the controlled oral delivery of rifampicin. J Drug Deliv Sci Technol 46:392–399

    CAS  Google Scholar 

  • Tong WY, Bin Abdullah AYK, NaS BR, Bin Wahid MIA, Hossain MS, Ring LC, Lazim Y, Tan W-N (2018) Antimicrobial wound dressing film utilizing cellulose nanocrystal as drug delivery system for curcumin. Cellulose 25:631–638

    CAS  Google Scholar 

  • Torlopov MA, Udoratina EV, Martakov IS, Pa S (2017) Cellulose nanocrystals prepared in H3PW12O40-acetic acid system. Cellulose 24:2153–2162

    CAS  Google Scholar 

  • Trache D, Hussin MH, Haafiz MM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9:1763–1786

    CAS  PubMed  Google Scholar 

  • Trovatti E, Silva NH, Duarte IF, Rosado CF, Almeida IF, Costa P, Freire CS, Silvestre AJ, Neto CP (2011) Biocellulose membranes as supports for dermal release of lidocaine. Biomacromol 12:4162–4168

    CAS  Google Scholar 

  • Trovatti E, Freire CS, Pinto PC, Almeida IF, Costa P, Silvestre AJ, Neto CP, Rosado C (2012) Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies. Int J Pharm 435:83–87

    CAS  PubMed  Google Scholar 

  • Uetani K, Yano H (2011) Nanofibrillation of wood pulp using a high-speed blender. Biomacromol 12:348–353

    CAS  Google Scholar 

  • Wan Y, Wang J, Gama M, Guo R, Zhang Q, Zhang P, Yao F, Luo H (2019) Biofabrication of a novel bacteria/bacterial cellulose composite for improved adsorption capacity. Composites A 125:105560

    CAS  Google Scholar 

  • Wang B, Sain M (2007) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67:2521–2527

    CAS  Google Scholar 

  • Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493

    CAS  Google Scholar 

  • Wang Q, Zhu J, Gleisner R, Kuster T, Baxa U, Mcneil S (2012) Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19:1631–1643

    CAS  Google Scholar 

  • Wang M, Yuan J, Huang X, Cai X, Li L, Shen J (2013) Grafting of carboxybetaine brush onto cellulose membranes via surface-initiated ARGET-ATRP for improving blood compatibility. Collids Surf B 103:52–58

    CAS  Google Scholar 

  • Wang J, Tavakoli J, Tang Y (2019) Bacterial cellulose production, properties and applications with different culture methods–a review. Carbohydr Polym 219:63–76

    CAS  PubMed  Google Scholar 

  • Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187–200

    CAS  Google Scholar 

  • Wei B, Yang G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym 84:533–538

    CAS  Google Scholar 

  • Xue Y, Mou Z, Xiao H (2017) Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications. Nanoscale 9:14758–14781

    CAS  PubMed  Google Scholar 

  • Yang H, Alam MN, Van De Ven TG (2013) Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers. Cellulose 20:1865–1875

    CAS  Google Scholar 

  • Yang W, Feng Y, He H, Yang Z (2018) Environmentally-friendly extraction of cellulose nanofibers from steam-explosion pretreated sugar beet pulp. Materials 11:1160

    PubMed Central  Google Scholar 

  • Yang W, Feng Y, He H, Yang Z (2018) Environmentally-friendly extraction of cellulose nanofibers from steam-explosion pretreated sugar beet pulp. Materials 11:1160

    PubMed Central  Google Scholar 

  • Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1:3938–3944

    CAS  Google Scholar 

  • Zhai L, Kim HC, Kim JW, Choi ES, Kim J (2018) Cellulose nanofibers isolated by TEMPO-oxidation and aqueous counter collision methods. Carbohydr Polym 191:65–70

    PubMed  Google Scholar 

  • Zhang L, Tsuzuki T, Wang X (2015) Preparation of cellulose nanofiber from softwood pulp by ball milling. Cellulose 22:1729–1741

    CAS  Google Scholar 

  • Zhao J, Lu C, He X, Zhang X, Zhang W, Zhang X (2015) Polyethylenimine-grafted cellulose nanofibril aerogels as versatile vehicles for drug delivery. ACS Appl Mater Interfaces 7:2607–2615

    CAS  PubMed  Google Scholar 

  • Zhou S, Ingram LO (2000) Synergistic hydrolysis of carboxymethyl cellulose and acid-swollen cellulose by two endoglucanases (celz and cely) fromerwinia chrysanthemi. J Bacteriol 182:5676–5682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou C, Wu Q, Yue Y, Zhang Q (2011) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Colloid Interface Sci 353:116–123

    CAS  PubMed  Google Scholar 

  • Zhu M, Wang J, Li N (2018) A novel thermo-sensitive hydrogel-based on poly (N-isopropylacrylamide)/hyaluronic acid of ketoconazole for ophthalmic delivery. Afr Cells Nanomed Biotechnol 46:1282–1287

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Wook Yoo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human and animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, N., Rahman, L., Kim, SH. et al. Recent advances of nanocellulose in drug delivery systems. J. Pharm. Investig. 50, 553–572 (2020). https://doi.org/10.1007/s40005-020-00499-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-020-00499-4

Keywords

Navigation