Skip to main content

Advertisement

Log in

Numerical Studies on PZT-Bonded Aluminium Beam

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series A Aims and scope Submit manuscript

Abstract

This paper presents a numerical study on the performance of a PZT (lead zirconate titanate)-bonded aluminium cantilever beam for both sensor and actuator configurations. The effect of varying the dimensions of PZT for two different cases of polarization direction is considered in the study. In case-1, polarization is along the length of PZT, and in case-2, polarization is across the thickness of PZT. The study is also extended for different configurations, types and locations of PZT. The results show that for case-1, the transverse displacement of the aluminium beam increases as the length of PZT decreases. No significant variation in displacement is noted by varying the width of PZT. Under different piezoelectric materials considered, PZT-5H showed maximum displacement. PZT, when located close to the support, showed maximum displacement and voltage response. The numerical results are also compared with one-dimensional analytical solutions and are found to be in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. I. Chopra, Review of state of art of smart structures and integrated systems. AIAA J. 40(11), 2145–2187 (2002)

    Article  Google Scholar 

  2. G. Geymonat, C. Licht, T. Weller, Plates made of piezoelectric materials: When are they really piezoelectric? Appl. Math. Model. 35(1), 165–173 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Bailey, J.E. Ubbard, Distributed piezoelectric-polymer active vibration control of a cantilever beam. J. Guid. Control Dyn. 8(5), 605–611 (1985)

    Article  MATH  Google Scholar 

  4. E.F. Crawley, J.D. Luis, Use of piezoelectric actuators as elements of intelligent structures. AIAA J. 25(10), 1373–1385 (1987)

    Article  Google Scholar 

  5. Z. Chaudhry, C.A. Rogers, The pin-force model revisited. J. Intell. Mater. Syst. Struct. 5(3), 347–354 (1994)

    Article  Google Scholar 

  6. L. Li, Z. Xue, C. Li, A modified pin force model for beams with active material bonded. Mater. Des. 97, 249–256 (2016)

    Article  Google Scholar 

  7. E.F. Crawley, E.H. Anderson, Detailed models of piezoceramic actuation of beams. J. Intell. Mater. Syst. Struct. 1(1), 4–25 (1990)

    Article  Google Scholar 

  8. M. Bendary, M. Adnan Elshafei, A.M. Riad, Finite element model of smart beams with distributed piezoelectric actuators. J. Intell. Mater. Syst. Struct. 21(7), 747–758 (2010)

    Article  Google Scholar 

  9. A. Nechibvute, A.R. Akande, P.V.C. Luhanga, Pertan. J. Sci. Technol. 19(2), 259–271 (2011)

    Google Scholar 

  10. A.R. Biswala, T. Roya, R.K. Beheraa, P.K. Paridab, S.K. Pradhanb, Finite element based modeling of a piezolaminated tapered beam for voltage generation. Proc. Eng. 144, 613–620 (2016)

    Article  Google Scholar 

  11. M. Zheng, M. Gudarzi, Q.-M. Wang, Modeling, fabrication and analysis of a flexible PZT-polymer laminated composite cantilever beam in sensing and actuation modes, in IEEE International Ultrasonics Symposium (IEEE, 2017)

  12. M.H. Shen, A new modeling technique for piezoelectrically actuated beams. Comput. Struct. 57(3), 361–366 (1995)

    Article  MATH  Google Scholar 

  13. S. Narayanan, V. Balamurugan, Finite element modelling of piezolaminated smart structures for active vibration control with distributed sensors and actuators. J. Sound Vib. 262(3), 529–562 (2003)

    Article  Google Scholar 

  14. N. Fallah, M. Ebrahimnejad, Finite volume analysis of adaptive beams with piezoelectric sensors and actuators. Appl. Math. Model. 38(2), 722–737 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. L.N. Sulbhewar, P. Raveendranath, A Timoshenko piezoelectric beam finite element with consistent performance irrespective of geometric and material configurations. Latin Am. J. Solids Struct. 13(5), 992–1015 (2016)

    Article  Google Scholar 

  16. R.L. Wankhade, K.M. Bajoria, Numerical optimization of piezolaminated beams under static and dynamic excitations. J. Sci. Adv. Mater. Dev. 2(2), 255–262 (2017)

    Google Scholar 

  17. E.F. Crawley, K.B. Lazarus, Induced strain actuation of isotropic and anisotropic plates. AIAA J. 29(6), 944–951 (1991)

    Article  Google Scholar 

  18. C.H. Hong, I. Chopra, Modeling and validation of induced strain actuation of composite coupled plates. AIAA J. 37(3), 372–377 (1999)

    Article  Google Scholar 

  19. A. Suleman, V.B. Venkayya, A simple finite element formulation for a laminated composite plate with piezoelectric layers. J. Intell. Mater. Syst. Struct. 6(6), 776–782 (1995)

    Article  Google Scholar 

  20. H.S. Tzou, R. Ye, Analysis of piezoelastic structures with laminated piezoelectric triangle shell elements. AIAA J. 34(1), 110–115 (1996)

    Article  MATH  Google Scholar 

  21. Z. Robert, R. Raimund, R. Michael, T. Jan, High-performance four-node shell element with piezoelectric coupling for the analysis of smart laminated structures. Int. J. Numer. Method Eng. 70(8), 934–961 (2007)

    Article  MATH  Google Scholar 

  22. N. Tamara, M. Dragan, S. Somu, T. Miroslav, User defined finite element for modeling and analysis of active piezoelectric shell structures. Meccanica 49(8), 1763–1774 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. D.J. Leo, Engineering Analysis of Smart Material Systems (Wiley, New Jersy, 2007)

    Book  Google Scholar 

  24. J. Gawryluk, A. Mitura, A. Teter, Experimental and numerical studies on the static deflection of the composite beam with the MFC element. Mech. Mech. Eng. 20(2), 97–108 (2016)

    Google Scholar 

  25. A. Nechibvute, C. Albert, L. Pearson, Finite element modeling of a piezoelectric composite beam and comparative performance study of piezoelectric materials for voltage generation. ISRN Mater. Sci. 2012, 11 (2012)

    Article  Google Scholar 

  26. M. Aslam, P. Nagarajan, M. Remanan, Analysis of piezoelectric solids using finite element method, in IOP Conference Series: Materials Science and Engineering, vol 330. (IOP Publishing, 2018)

  27. S. Timoshenko, G.H. MacCullough, Elements of Strength of Materials (Van Nostrand Reinhold Company, New York, 1935)

    Google Scholar 

  28. Q. Wang, W. Yu, Asymptotic multiphysics modeling of composite slender structures. Smart Mater. Struct. 21(3), 1–11 (2012)

    Article  Google Scholar 

  29. eFunda: Piezo Material Data. http://www.efunda.com/materials/piezo/material_data/matdata_index.cfm. Accessed 01 Dec 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Aslam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, M., Nagarajan, P. & Remanan, M. Numerical Studies on PZT-Bonded Aluminium Beam. J. Inst. Eng. India Ser. A 100, 117–130 (2019). https://doi.org/10.1007/s40030-018-0340-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40030-018-0340-5

Keywords

Navigation