Skip to main content
Log in

Free Vibration of Thermally Stressed Angle-Ply Laminated Composite Using First-Order Shear Deformation Theory Model with Assumed Natural Shear Strain

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

A four-nodded rectangular finite element based on first-order shear deformation theory is used to investigate the dynamic behavior of thermally stressed angle-ply laminated composite plates. Total potential energy and Hamilton’s principles have been used to formulate stiffness, geometric and mass matrices. Assumed natural strain method has been employed to avoid potential shear locking. Convergence of the first natural frequency and critical temperature rise has been checked out through a set of examples whose results compare well with 3D solution and other finite elements models from the literature. The effects of side-to-thickness ratio, anisotropy degree and fibers orientation angle, on the first natural frequency and critical temperature have also been investigated. Furthermore, the free vibration of thermally stressed angle-ply laminated composite plates has been investigated for different side-to-thickness ratios and fiber orientations. The results have shown that the first natural frequency decreases linearly with temperature rise, which is in accordance with those from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\(A_{ij} , B_{ij} , D_{ij}\) and \(H_{ij}\) :

Elasticity matrices of the laminate

\(E_{1}^{\left( k \right)}\), \(E_{2}^{\left( k \right)}\) :

Young modulus of the material in the 1 and 2 directions of the kth layer

\(G_{12}^{\left( k \right)}\), \(G_{23}^{\left( k \right)}\) and \(G_{13}^{\left( k \right)}\) :

Shear modulus in the 1–2, 2–3 and 1–3 planes of the kth layer

\(\left\{ k \right\}\) :

Curvature vector

\(\left[ {K_{e} } \right]\) :

The elementary stiffness matrix

\(\left[ {K_{g}^{e} } \right]\) :

The elementary geometrical matrix

\(\left[ m \right]\) :

The inertia matrix

\(\left[ M \right]\) :

The mass matrix

\(M_{x} , M_{y}\) and \(M_{xy}\) :

Moment resultants

\(N_{x} , N_{y }\) and \(N_{xy}\) :

Normal stress resultants

\(N_{tx} , N_{ty}\) and \(N_{txy}\) :

Normal stress resultants due to temperature rise

\(N_{\alpha } \left( {x,y} \right)\) :

The bilinear Lagrange shape functions associated with node α

\(P_{i} \left( y \right)\) and \(Q_{i} \left( x \right)\) :

Interpolation functions

\(\left\{ q \right\}\) :

Elementary displacement vector

\(Q_{ij}^{\left( k \right)^\circ }\) :

The reduced stiffness components in local coordinates system of the kth layer

\(Q_{xz} , Q_{yz}\) :

Transverse shear stress resultants

\(\bar{Q}_{11}^{\left( k \right)}\) :

The reduced stiffness components in laminate coordinates system of the kth layer

T:

Time parameter

\(T\) :

The kinetic energy

\(u, v\) :

In-plane displacement vector components

\(u_{0} , v_{0}\) :

In-plane displacement vector components at the mid-plane of the laminate \(\left( {z = 0} \right)\)

\(U\) :

The strain potential energy

\(w\) :

Out-of-plane displacement vector component

\(W\) :

The external forces work

\(x, y\) and \(z\) :

Coordinates of point within the plate

\(\alpha_{1}^{\left( k \right)}\), \(\alpha_{2}^{\left( k \right)}\) :

Coefficients of thermal expansion of the kth layer in local coordinates system

\(\alpha_{x}^{\left( k \right)} , \alpha_{y}^{\left( k \right)}\) and \(\alpha_{xy}^{\left( k \right)}\) :

Coefficients of thermal expansion of the kth layer in laminate coordinates system

\(\gamma_{12}^{\left( k \right)}\) :

In-plane shear strain of the kth layer in local coordinates system

\(\gamma_{13}^{\left( k \right)}\), \(\gamma_{23}^{\left( k \right)}\) :

Transverse shear strain of the kth layer in local coordinates system

\(\left\{ {\gamma_{s} } \right\}\) :

Transverse shear strain vector

\(\bar{\gamma }_{xz}^{A} ,\bar{\gamma }_{yz}^{A}\) :

The sampling points

\(\delta^{\alpha }\) :

Displacement vector component associated with node α

\(\delta \left( {x,y} \right)\) :

The displacement vector component of a given point M(x, y) within an element

\(\Delta T\) :

The temperature rise

\(\Delta T_{\text{cr}}\) :

Critical temperature rise

\(\left\{ \varepsilon \right\}\) :

Strain vector

\(\left\{ {\varepsilon^{0} } \right\}\) :

Membrane strain vector

\(\varepsilon_{1}^{\left( k \right)} , \varepsilon_{2}^{\left( k \right)}\) :

Membrane strain of the kth layer in local coordinates system

\(\varepsilon_{x}^{\left( k \right)} , \varepsilon_{y}^{\left( k \right)}\) :

Membrane strain of the kth layer in laminate coordinates system

θ :

Fibers orientation angle with respect to laminate coordinates system

\(\lambda\) :

Loading factor

\(\lambda_{\text{cr}}\) :

Critical loading factor

\(\nu_{12}^{\left( k \right)}\), \(\nu_{21}^{\left( k \right)}\) :

Poisson’s ratios

\(\pi\) :

The total potential energy

\(\sigma_{1}^{K} , \sigma_{2}^{K}\) :

Normal stresses of the kth layer in local coordinates system

\(\sigma_{x}^{\left( k \right)}\), \(\sigma_{y}^{\left( k \right)}\) :

Normal stresses of the kth layer in laminate coordinates system

\(\tau_{13}^{\left( k \right)}\), \(\tau_{23}^{\left( k \right)}\) :

Transverse shear stresses of the kth layer in local coordinates system

\(\tau_{xy}^{k}\) :

In-plane shear stress of the kth layer in local coordinates system

\(\tau_{xy}^{\left( k \right)}\) :

In-plane shear stress of the kth layer in laminate coordinates system

\(\tau_{xz}^{\left( k \right)}\), \(\tau_{xz}^{\left( k \right)}\) :

Transverse shear stresses of the kth layer in laminate coordinates system

\(\varphi_{x}\) :

Angle of rotation with respect to the y-axis

\(\varphi_{y}\) :

Angle of rotation with respect to the x-axis

\(\omega\) :

The natural frequency

References

  1. J.-S. Park, J.-H. Kim, S.-H. Moon, Vibration of thermally post-buckled composite plates embedded with shape memory alloy fibers. Compos. Struct. 63(2), 179–188 (2004)

    Article  Google Scholar 

  2. S. Sirinivas, C.V.J. Rao, A.K. Rao, An exact analysis for vibration of simply supported homogeneous and laminates thick rectangular plates. J. Sound Vib. 12(2), 187–199 (1970)

    Article  Google Scholar 

  3. S. Srinivas, A refined analysis of composite laminates. J. Sound Vib. 30(4), 495–507 (1973)

    Article  Google Scholar 

  4. A.K. Noor, Free vibrations of multilayered composite Plates. AIAA J. 11(7), 1038–1039 (1973)

    Article  Google Scholar 

  5. J.N. Reddy, T. Kuppusamy, Natural vibrations of laminated anisotropic plates. J. Sound Vib. 94(1), 63–69 (1984)

    Article  Google Scholar 

  6. M. Di Sciuva, Bending, vibration and buckling of simply supported thick multilayered orthotropic plates, an evaluation of a displacement model. J. Sound Vib. 105(3), 425–442 (1986)

    Article  Google Scholar 

  7. A.K. Nayak, S.S.J. Moy, R.A. Shenoi, Free vibration analysis of composite sandwich plates based on Reddy’s high order theory. Compos. B Eng. 33(7), 505–519 (2002)

    Article  Google Scholar 

  8. W. Zhen, C. Wanji, R. Xiaohui, An accurate high order theory and C0 finite element for free vibration analysis of laminated composite and sandwich plates. Compos. Struct. 92(6), 1299–1307 (2010)

    Article  Google Scholar 

  9. T. Kant, K. Swaminathan, Analytical solution for free vibration of laminated composite and sandwich plates based on higher refined theory. Compos. Struct. 53(1), 73–85 (2001)

    Article  Google Scholar 

  10. Gossard, M.L., Seide, P., Roberts, W.M. Thermal buckling of plates. NACA TND; (1952) p. 2771

  11. A. Noor, W.S. Burton, Three-dimensional solutions for thermal buckling of multilayered anisotropic plates. J. Eng. Mech. 118(4), 683–701 (1992)

    Article  Google Scholar 

  12. J.M. Whitney, J.E. Ashton, Effect of environment on the elastic response of layered composite plate. AIAA J 9(8), 1708–1713 (1971)

    Article  Google Scholar 

  13. W. Zhen, C. Wanji, Thermo-mechanical buckling of laminated composite and sandwich plates using global-local higher order theory. Int. J. Mech. Sci. 49(6), 712–721 (2007)

    Article  Google Scholar 

  14. S. Singh, J. Singh, K.K. Shukla, Buckling of laminated composite plates subjected to mechanical and thermal loads using Meshless collocations. J. Mech. Sci. Technol. 27(2), 327–336 (2013)

    Article  Google Scholar 

  15. M. Cetkovic, Thermal buckling of laminated composite plates using Layerwise displacement model. Compos. Struct. 142, 238–253 (2016)

    Article  Google Scholar 

  16. F.L. Lurie, Lateral vibrations as related to structural stability. ASME J. Appl. Mech. 19(2), 195–204 (1952)

    MATH  Google Scholar 

  17. A.K. Noor, W.S. Burton, Three-dimensional solutions for the free vibrations and buckling of thermally stressed multilayered angle-ply composite plates. ASME J. Appl. Mech. 59(12), 868–877 (1992)

    Article  Google Scholar 

  18. R. Zhou, D. Xue, C. Mei, C. Gray, Vibration of thermally buckled composite plates with initial deflections using triangular elements. In: AIAA/ASME/ASCE/AHS/ASC Structures, structural dynamics, and materials conference, 34th and AIAA/ASME adaptive structures forum, La Jolla, CA, April 19–22, 1993, Technical Papers. Pt. 1 (A93-33876 13-39), p. 226–235

  19. D.-M. Lee, I. Lee, Vibration behaviors of thermally post-buckled anisotropic plates using first-order shear deformable plate theory. Comput. Struct. 63(3), 371–378 (1997)

    Article  Google Scholar 

  20. H. Matsuyama, Vibration and stability of cross-ply laminated composite plates according to a global higher-order plate theory. Compos. Struct. 48(4), 231–244 (2000)

    Article  Google Scholar 

  21. H. Matsunaga, Vibration and stability of angle-ply laminated composite plates subjected to in-plane stresses. Int. J. Mech. Sci. 43(8), 1925–1944 (2001)

    Article  Google Scholar 

  22. H. Matsunaga, Thermal buckling of cross-ply laminated composite and sandwich plates according to a global higher-order deformation theory. Compos. Struct. 68(4), 439–454 (2005)

    Article  Google Scholar 

  23. H. Matsunaga, Free vibration and stability of angle-ply laminated composite and sandwich plates under thermal loading. Compos. Struct. 77(2), 249–262 (2007)

    Article  Google Scholar 

  24. A. Khanna, N. Kaur, Effect of thermal gradient on vibration of non-uniform Visco-elastic rectangular plate. J. Inst. Eng. India Ser. C 97(2), 141–148 (2016)

    Article  Google Scholar 

  25. E. Reissner, On the theory of bending of elastic plates. J. Math. Phys. 23, 184–191 (1944)

    Article  MathSciNet  Google Scholar 

  26. E. Reissner, Y. Stavsky, Bending and stretching of certain types of elastic plates. J. Appl. Mech. 28(3), 402–408 (1961)

    Article  MathSciNet  Google Scholar 

  27. R. Rolfes, K. Rohwer, Improved transverse shear stresses in composite finite elements based on first order shear formation theory. Int. J. Numer. Methods Eng. 40(1), 51–60 (1997)

    Article  Google Scholar 

  28. R.D. Mindlin, Influence of rotary inertia and shear on flexural motion of isotropic elastic plates. J. Appl. Mech. 18(1), 31–38 (1951)

    MATH  Google Scholar 

  29. S.J. Lee, Free- vibration analysis of plates by using a four node finite element formulated with assumed natural transverse shear strain. J. Sound Vib. 278(3), 657–684 (2004)

    Article  Google Scholar 

  30. H. Matsunaga, Thermal buckling of cross-ply laminated composite and sandwich plates according to a global higher-order deformation theory. Compos. Struct. 68(4), 439–454 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelouahab Tati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tati, A., Bouadjadja, S. & Bada, Y. Free Vibration of Thermally Stressed Angle-Ply Laminated Composite Using First-Order Shear Deformation Theory Model with Assumed Natural Shear Strain. J. Inst. Eng. India Ser. C 100, 937–947 (2019). https://doi.org/10.1007/s40032-018-0484-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-018-0484-0

Keywords

Navigation