Skip to main content
Log in

Tribological Properties of Al–SiC Metal Matrix Composites: A Comparison Between Sand Cast and Squeeze Cast Techniques

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

Tribological behaviour of Al–SiC metal matrix composites prepared using two different fabrication techniques, viz. sand cast and squeeze cast techniques are studied in a multi- tribotester (TR-25, DUCOM, India) under dry sliding conditions and ambient atmosphere for varying volume fraction of reinforcement, applied load and sliding speed. Friction increases with increase in applied load and sliding speed and volume fraction of reinforcement. Wear test results show increased wear rates at higher load and speed, while increase in SiC volume fraction yields decrease in wear rate. Corrosion study conducted in 3.5 % NaCl solution shows that squeeze cast composites have better corrosion resistance than sand cast composites. Vickers’s microhardness test shows improved hardness properties for squeeze cast composites compared to sand cast ones. The microstructure study of wear tracks reveals domination of abrasive wear with minor traces of adhesive wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. P.N. Bindumadhavan, T.K. Chia, M. Chandrasekaran, H.K. Wah, L.N. Lam, O. Prabhakar, Effect of particle-porosity clusters on tribological behaviour of cast aluminium alloy A356-SiCp metal matrix composites. Mater. Sci. Eng. A 315, 217–226 (2001)

    Article  Google Scholar 

  2. L. Ceschini, C. Bosi, A. Casagrande, G.L. Garagnani, Effect of thermal treatment and recycling on the tribological behaviour of an AlSiMg–SiCp composite. Wear 251, 1377–1385 (2001)

    Article  Google Scholar 

  3. S.K. Ghosh, P. Saha, Crack and wear behaviour of SiC particulate reinforced aluminium based metal matrix composite fabricated by direct metal laser sintering process. Mater. Des. 32, 139–145 (2011)

    Article  Google Scholar 

  4. A.M. Hassan, A. Alrashdan, M.T. Hayajneh, A.T. Mayyas, Wear behaviour of Al–Mg–Cu–based composites containing SiC particles. Tribol. Int. 42, 1230–1238 (2009)

    Article  Google Scholar 

  5. K. Kaur, R. Anant, O.P. Pandey, Tribological behaviour of SiC particle reinforced Al–Si alloy. Tribol. Lett. 44, 41–58 (2012)

    Article  Google Scholar 

  6. S. Kumar, V. Balasubramanian, Effect of reinforcement size and volume fraction on the abrasive wear behaviour of AA7075 Al/SiCp P/M composites—a statistical analysis. Tribol. Int. 43, 414–422 (2010)

    Article  MathSciNet  Google Scholar 

  7. S.C. Sharma, B.M. Girish, R. Kamath, B.M. Satish, Effect of SiC particle reinforcement on the unlubricated sliding wear behaviour of ZA-27 alloy composites. Wear 213, 33–40 (1997)

    Article  Google Scholar 

  8. T. Miyajima, Y. Iwai, Effects of reinforcements on sliding wear behaviour of aluminium matrix composites. Wear 255, 606–616 (2003)

    Article  Google Scholar 

  9. R.N. Rao, S. Das, Effect of matrix alloy and influence of SiC particle on the sliding wear characteristics of aluminium alloy composites. Mater. Des. 31, 1200–1207 (2010)

    Article  Google Scholar 

  10. Y. Iwai, H. Yoneda, T. Honda, Sliding wear behaviour of SiC whisker-reinforced aluminium composite. Wear 181–183, 594–602 (1995)

    Article  Google Scholar 

  11. Y. Yalcin, H. Akbulut, Dry wear properties of A356–SiC particle reinforced MMCs produced by two melting routes. Mater. Des. 27, 872–881 (2006)

    Article  Google Scholar 

  12. K.M. Shorowordi, A.S.M.A. Haseeb, J.P. Celis, Tribo-surface characteristics of Al-B4C and Al–SiC composites worn under different contact pressures. Wear 261, 634–641 (2006)

    Article  Google Scholar 

  13. S. Zhang, F. Wang, Comparison of friction and wear performances of brake material dry sliding against two aluminium matrix composites reinforced with different SiC particles. J. Mater. Process. Technol. 182, 122–127 (2007)

    Article  Google Scholar 

  14. T. Ma, H. Yamaura, D.A. Koss, R.C. Voigt, Dry sliding wear behaviour of cast SiC-reinforced Al MMCs. Mater. Sci. Eng. A360, 116–125 (2003)

    Article  Google Scholar 

  15. H. Chen, A.T. Alpas, Wear of aluminium matrix composites reinforced with nickel-coated carbon fibres. Wear 192, 186–198 (1996)

    Article  Google Scholar 

  16. M. Bai, Q. Xue, X. Wang, Y. Wan, W. Liu, Wear mechanism of SiC whisker-reinforced 2024 aluminium alloy matrix composites in oscillating sliding wear tests. Wear 185, 197–202 (1995)

    Article  Google Scholar 

  17. G. Straffelini, M. Pellizzari, A. Molinari, Influence of load and temperature on the dry sliding behaviour of Al-based metal-matrix-composites against friction material. Wear 256, 754–763 (2004)

    Article  Google Scholar 

  18. B. Venkataraman, G. Sundararajan, The sliding wear behaviour of Al–SiC particulate composite-I Macro behaviour. Acta Mater. 44, 451–460 (1996)

    Article  Google Scholar 

  19. B. Venkataraman, G. Sundararajan, The sliding wear behaviour of Al–SiC particulate composite-II The characterization of subsurface deformation and correlation with wear behaviour. Acta Mater. 44, 461–473 (1996)

    Article  Google Scholar 

  20. R. Chen, A. Iwabuchi, T. Shimizu, H. Seop Shin, H. Mifune, The sliding wear resistance behaviour of NiAl and SiC particles reinforced aluminium alloy matrix composites. Wear 213, 175–184 (1997)

    Article  Google Scholar 

  21. J.K.M. Kwok, S.C. Lim, High-speed tribological properties of some Al/SiCp composites: I. Frictional and wear-rate characteristics. Compos. Sci. Technol. 59, 55–63 (1999)

    Article  Google Scholar 

  22. R. Chen, A. Iwabuchi, T. Shimizu, The effect of a T6 heat treatment on the fretting wear of a SiC particle-reinforced A356 aluminium alloy matrix composite. Wear 238, 110–119 (2000)

    Article  Google Scholar 

  23. M. Izciler, M. Muratoglu, Wear behaviour of SiC reinforced 2124 Al alloy composite in RWAT system. J. Mater. Process. Technol. 132, 67–72 (2003)

    Article  Google Scholar 

  24. N. Natarajan, S. Vijayarangan, I. Rajendran, Wear behaviour of A356/25SiCp aluminium matrix composites sliding against automobile friction material. Wear 261, 812–822 (2006)

    Article  Google Scholar 

  25. A. Daoud, M.T. Abou El-khair, Wear and friction behaviour of sand cast brake rotor made of A359-20 vol% SiC particle composites sliding against automobile friction material. Tribol. Int. 43, 544–553 (2010)

    Article  Google Scholar 

  26. G.J. Howell, A. Ball, Dry sliding wear of particulate-reinforced aluminium alloys against automobile friction materials. Wear 181–183, 379–390 (1995)

    Article  Google Scholar 

  27. K.M. Shorowordi, A.S.M.A. Haseeb, J.P. Celis, Velocity effects on the wear, friction and tribo chemistry of aluminium MMC sliding against phenolic brake pad. Wear 256, 1176–1181 (2004)

    Article  Google Scholar 

  28. A. Onat, Mechanical and dry sliding wear properties of silicon carbide particulate reinforced aluminium-copper alloy matrix composites produced by direct squeeze casting method. J. Alloys Compd. 489, 119–124 (2010)

    Article  Google Scholar 

  29. R. Ipek, Adhesive wear behaviour of B4C and SiC reinforced 4147 Al matrix composites (Al/B4C-Al/SiC). J. Mater. Process. Technol. 162–163, 71–75 (2005)

    Article  Google Scholar 

  30. A. Martin, M.A. Martinez, J. LLorca, Wear of SiC-reinforced Al-matrix composites in the temperature range 20-2000C. Wear 193, 169–179 (1996)

    Article  Google Scholar 

  31. S.L. Winkler, H.M. Flower, Stress corrosion cracking of cast 7XXX aluminium fibre reinforced composites. Corros. Sci. 46, 903–915 (2004)

    Article  Google Scholar 

  32. S. Candan, Effect of SiC particle size on corrosion behaviour of pressure infiltration Al matrix composites in a NaCl solution. Mater. Lett. 58, 3601–3605 (2004)

    Article  Google Scholar 

  33. S. Candan, An investigation on corrosion behaviour of pressure infiltration Al-Mg alloy/SiCp composites. Corros. Sci. 51, 1392–1398 (2009)

    Article  Google Scholar 

  34. J. Datta, B. Samanta, A. Jana, S. Sinha, C. Bhattacharya, S. Bandyopadhay, Role of Cl and NO3ions on the corrosion behaviour of 20% SiCp reinforced 6061-Al metal matrix composite: a correlation between electrochemical studies and atomic force microscopy. Corros. Sci. 50, 2658–2668 (2008)

    Article  Google Scholar 

  35. A. Pardo, M.C. Merino, S. Merino, F. Viejo, M. Carboneras, R. Arrabal, Influence of reinforcement proportion and matrix composition on pitting corrosion behaviour of cast alumina matrix composite (A3xx.x/SiCp). Corros. Sci. 47, 1750–1764 (2005)

    Article  Google Scholar 

  36. J. Datta, S. Datta, M.K. Banerjee, S. Bandyopadhay, Beneficial effect of scandium addition on the corrosion behaviour of Al–Si–Mg–SiCp metal matrix composite. Compos. Part A Appl. Sci. Manuf. 35, 1003–1008 (2004)

    Article  Google Scholar 

  37. E. Poorqasemi, O. Abootalebi, M. Peikari, F. Haqdar, Investigating accuracy of the Tafel extrapolation method in HCl solutions. Corros. Sci. 51, 1043–1054 (2009)

    Article  Google Scholar 

  38. R. Colaco, R. Vilar, A model for the abrasive wear of metallic matrix particle-reinforced materials. Wear 254, 625–634 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sahoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Sahoo, P. & Sutradhar, G. Tribological Properties of Al–SiC Metal Matrix Composites: A Comparison Between Sand Cast and Squeeze Cast Techniques. J. Inst. Eng. India Ser. D 95, 161–171 (2014). https://doi.org/10.1007/s40033-014-0044-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-014-0044-6

Keywords

Navigation