Skip to main content
Log in

Towards investigating the characteristics and thermal kinetic behavior of emergent nanostructured nitrocellulose prepared using various sulfonitric media

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

With the aim of developing promising generation of cellulose-based energetic materials, nanostructured nitrocellulose biopolymers (NNCs) were prepared from cellulose microcrystals using different sulfonitric media. Their molecular structure, physicochemical features, crystallinity and thermal behavior were examined to scrutinize the nitration processes by pointing out the effect of nitric acid content in the nitrating medium. The experimental findings showed that the produced NNCs displayed outstanding properties, including elevated density (≥ 1.689) and great substitution degree (≥ 2.58), which are higher than those of the conventionally used pristine nitrocellulose (NC). Furthermore, it was found that the increase of nitric acid concentration from 70 to 100% promoted the nitrogen content, density and viscosity-average molecular weight of the as-prepared NNCs, whereas, their crystallinity index and thermal stability decreased. Their non-isothermal decomposition kinetics were also investigated using isoconversional approaches, revealing a decreased trend of the Arrhenius parameters from NNC-70 to NNC-100, and hence following different decomposition models. Consequently, these results enrich future prospects for the design of new generation of energetic nanostructured cellulosic biopolymers for potential use in advanced composite explosives and solid propellants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Trache, D., Tarchoun, A.F.: Differentiation of stabilized nitrocellulose during artificial aging: Spectroscopy methods coupled with principal component analysis. J. Chemometr. 33, e3163 (2019)

    Article  CAS  Google Scholar 

  2. Cherif, M.F., Trache, D., Benaliouche, F., Tarchoun, A.F., Chelouche, S., Mezroua, A.: Organosolv lignins as new stabilizers for cellulose nitrate: thermal behavior and stability assessment. Int. J. Biol. Macromol. 164, 794–807 (2020)

    Article  CAS  Google Scholar 

  3. Sabatini, J.J., Johnson, E.C.: A short review of nitric esters and their role in energetic materials. ACS Omega 6, 11813–11821 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang, M., Kong, Q., Feng, W., Yao, W., Wang, Q.: Caged biomass carbon with anchoring MoO2/NC nanospheres: synergistic enhancement of potassium ion storage and electrochemical performance. Appl. Surf. Sci. 569, 150984 (2021)

    Article  CAS  Google Scholar 

  5. Tarchoun, A.F., Trache, D., Klapötke, T.M.: Microcrystalline cellulose from Posidonia oceanica brown algae: extraction and characterization. Int. J. Biol. Macromol. 138, 837–845 (2019)

    Article  CAS  PubMed  Google Scholar 

  6. Tarchoun, A.F., Trache, D., Klapötke, T.M., Selmani, A., Saada, M., Chelouche, S., Mezroua, A., Abdelaziz, A.: New insensitive high-energy dense biopolymers from giant reed cellulosic fibers: their synthesis, characterization, and non-isothermal decomposition kinetics. New J. Chem. 45, 5099–5113 (2021)

    Article  CAS  Google Scholar 

  7. Liu, J.: Nitrate Esters Chemistry and Technology. Springer, New York (2019).

  8. Nikolsky, S.N., Zlenko, D.V., Melnikov, V.P., Stovbun, S.V.: The fibrils untwisting limits the rate of cellulose nitration process. Carbohyd. Polym. 204, 232–237 (2019)

    Article  CAS  Google Scholar 

  9. Moniruzzaman, M., Bellerby, J.M., Bohn, M.A.: Activation energies for the decomposition of nitrate ester groups at the anhydroglucopyranose ring positions C2, C3 and C6 of nitrocellulose using the nitration of a dye as probe. Polym. Degrad. Stab. 102, 49–58 (2014)

    Article  CAS  Google Scholar 

  10. Sullivan, F., Simon, L., Ioannidis, N., Patel, S., Ophir, Z., Gogos, C., Jaffe, M., Tirmizi, S., Bonnett, P., Abbate, P.: Nitration kinetics of cellulose fibers derived from wood pulp in mixed acids. Ind. Eng. Chem. Res. 57, 1883–1893 (2018)

    Article  CAS  Google Scholar 

  11. Tarchoun, A.F., Trache, D., Klapötke, T.M., Krumm, B., Kofen, M.: Synthesis and characterization of new insensitive and high-energy dense cellulosic biopolymers. Fuel 292, 120347 (2021)

    Article  CAS  Google Scholar 

  12. Jori Roslan, N., Jamal, S.H., Ong, K.K., Wan Yunus, W.M.Z.: Preliminary study on the effect of sulphuric acid to nitric acid mixture composition, temperature and time on nitrocellulose synthesis based Nata de Coco. In: Solid State Phenomena. Trans Tech Publication, pp. 312–319 (2021)

  13. Wang, Q., Gu, Y., Ren, C., Liu, H., Su, P.: Effect of acid concentration on thermal stability of nitrocellulose (NC) for civil use. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing, pp. 022018 (2021)

  14. Huang, S., Wei, R., Weng, J., Wang, J.: An experimental study on the effects of ethanol content on the decomposition and burning risks of nitrocellulose. Cellulose 28, 4595–4609 (2021)

    Article  CAS  Google Scholar 

  15. Santos, D., Iop, G.D., Bizzi, C.A., Mello, P.A., Mesko, M.F., Balbinot, F.P., Flores, E.M.: A single step ultrasound-assisted nitrocellulose synthesis from microcrystalline cellulose. Ultrasonics Sonochem. 72, 105453 (2021)

    Article  CAS  Google Scholar 

  16. Chai, H., Duan, Q., Cao, H., Li, M., Sun, J.: Effects of nitrogen content on pyrolysis behavior of nitrocellulose. Fuel 264, 116853 (2020)

    Article  CAS  Google Scholar 

  17. Wang, Z., Dai, L., Yao, J., Guo, T., Hrynsphan, D., Tatsiana, S., Chen, J.: Improvement of Alcaligenes sp. TB performance by Fe-Pd/multi-walled carbon nanotubes: enriched denitrification pathways and accelerated electron transport. Bioresour. Technol. 327, 124785 (2021)

    Article  CAS  PubMed  Google Scholar 

  18. Sullivan, F., Simon, L., Ioannidis, N., Patel, S., Ophir, Z., Gogos, C., Jaffe, M., Tirmizi, S., Bonnett, P., Abbate, P.: Chemical reaction modeling of industrial scale nitrocellulose production for military applications. AIChE J. 20, e16234 (2020)

    Google Scholar 

  19. Zhao, N., Ma, H., Yao, E., Yu, Z., An, T., Zhao, F., Yu, X.: Influence of tailored CuO and Al/CuO nanothermites on the thermocatalytic degradation of nitrocellulose and combustion performance of AP/HTPB composite propellant. Cellulose 21, 1–21 (2021)

    CAS  Google Scholar 

  20. Tang, R., Alam, N., Li, M., Xie, M., Ni, Y.: Dissolvable sugar barriers to enhance the sensitivity of nitrocellulose membrane lateral flow assay for COVID-19 nucleic acid. Carbohyd. Polym. 118259 (2021).

  21. Gismatulina, Y.A., Budaeva, V.V., Sakovich, G.V.: Nitrocellulose synthesis from miscanthus cellulose. Propell. Explos. Pyrot. 43, 96–100 (2018)

    Article  CAS  Google Scholar 

  22. Zhang, X., Sun, X., Lv, T., Weng, L., Chi, M., Shi, J., Zhang, S.: Preparation of PI porous fiber membrane for recovering oil-paper insulation structure. J. Mater. Sci. Mater. Electron. 31, 13344–13351 (2020)

    Article  CAS  Google Scholar 

  23. Yu, Y., Zhao, Y., Qiao, Y.-L., Feng, Y., Li, W.-L., Fei, W.-D.: Defect engineering of rutile TiO2 ceramics: route to high voltage stability of colossal permittivity. J. Mater. Sci. Technol. 84, 10–15 (2021)

    Article  CAS  Google Scholar 

  24. Tarchoun, A.F., Trache, D., Klapötke, T.M., Derradji, M., Bessa, W.: Ecofriendly isolation and characterization of microcrystalline cellulose from giant reed using various acidic media. Cellulose 26, 7635–7651 (2019)

    Article  CAS  Google Scholar 

  25. Beroual, M., Boumaza, L., Mehelli, O., Trache, D., Tarchoun, A.F., Khimeche, K.: Physicochemical properties and thermal stability of microcrystalline cellulose isolated from esparto grass using different delignification approaches. J. Polymers Environ. 1–13 (2020).

  26. Tarchoun, A.F., Trache, D., Derradji, M., Bessa, W., Belgacemi, R.: Cellulose nanoparticles: extractions. Cellulose Nanoparticles 113–148 (2021).

  27. Rajnish, K.N., Samuel, M.S., John, A., Datta, S., Narendhar, C., Balaji, R., Jose, S., Selvarajan, E.: Immobilization of cellulase enzymes on nano and micro-materials for breakdown of cellulose for biofuel production-a narrative review. Int. J. Biol. Macromol. 182, 1793–1802 (2021)

    Article  CAS  PubMed  Google Scholar 

  28. Hu, M., Wang, Y., Yan, Z., Zhao, G., Zhao, Y., Xia, L., Cheng, B., Di, Y., Zhuang, X.: Hierarchical dual-nanonet of polymer nanofibers and supramolecular nanofibrils for air filtration with high filtration efficiency, low air resistance and high moisture permeation. J. Mater Chem. A. 9, 14093–14100 (2021)

    Article  CAS  Google Scholar 

  29. Bessa, W., Trache, D., Derradji, M., Bentoumia, B., Tarchoun, A.F., Hemmouche, L.: Effect of silane modified microcrystalline cellulose on the curing kinetics, thermo-mechanical properties and thermal degradation of benzoxazine resin. Int. J. Biol. Macromol. 180, 194–202 (2021)

    Article  CAS  PubMed  Google Scholar 

  30. Tarchoun, A.F., Trache, D., Klapötke, T.M., Belmerabet, M., Abdelaziz, A., Derradji, M., Belgacemi, R.: Synthesis, characterization, and thermal decomposition kinetics of nitrogen-rich energetic biopolymers from aminated giant reed cellulosic fibers. Ind. Eng. Chem. Res. (2020).

  31. Kian, L.K., Saba, N., Jawaid, M., Fouad, H.: Characterization of microcrystalline cellulose extracted from olive fiber. Int. J. Biol. Macromol. (2020).

  32. Rani, A., Reddy, R., Sharma, U., Mukherjee, P., Mishra, P., Kuila, A., Sim, L.C., Saravanan, P.: A review on the progress of nanostructure materials for energy harnessing and environmental remediation. J. Nanostruct. Chem. 8, 255–291 (2018)

    Article  CAS  Google Scholar 

  33. Zhang, K., Qiu, L., Tao, J., Zhong, X., Lin, Z., Wang, R., Liu, Z.: Recovery of gallium from leach solutions of zinc refinery residues by stepwise solvent extraction with N235 and Cyanex 272. Hydrometallurgy 205, 105722 (2021).

  34. Dobrynin, O.S., Zharkov, M.N., Kuchurov, I.V., Fomenkov, I.V., Zlotin, S.G., Monogarov, K.A., Meerov, D.B., Pivkina, A.N., Muravyev, N.V.: Supercritical antisolvent processing of nitrocellulose: downscaling to nanosize, reducing friction sensitivity and introducing burning rate catalyst. Nanomaterials 9, 1386 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  35. Okada, K., Saito, Y., Akiyoshi, M., Endo, T., Matsunaga, T.: Preparation and characterization of nitrocellulose nanofiber. Propell. Explos. Pyrot. 46, 1–8 (2021)

    Article  CAS  Google Scholar 

  36. Meng, X., Pu, C., Cui, P., Xiao, Z.: Preparation, thermal and sensitivity properties of nano-sized spherical nitrocellulose composite crystal. Propell. Explos. Pyrot. 45 (2020).

  37. Tarchoun, A.F., Trache, D., Klapötke, T.M., Khimeche, K.: Tetrazole-functionalized microcrystalline cellulose: a promising biopolymer for advanced energetic materials. Chem. Eng. J. 400, 125960 (2020)

    Article  CAS  Google Scholar 

  38. Tarchoun, A.F., Trache, D., Klapötke, T.M., Krumm, B., Mezroua, A., Derradji, M., Bessa, W.: Design and characterization of new advanced energetic biopolymers based on surface functionalized cellulosic materials. Cellulose 1–17 (2021).

  39. Tarchoun, A.F., Trache, D., Klapötke, T.M., Abdelaziz, A., Derradji, M., Bekhouche, S.: Chemical design and characterization of cellulosic derivatives containing high-nitrogen functional groups: towards the next generation of energetic biopolymers. Defence Technol. (2021).

  40. Tarchoun, A.F., Trache, D., Klapötke, T.M., Krumm, B., Khimeche, K., Mezroua, A.: A promising energetic biopolymer based on azide-functionalized microcrystalline cellulose: synthesis and characterization. Carbohyd. Polym. 116820 (2020).

  41. Gao, X., Jiang, L., Xu, Q., Wu, W.-Q., Mensah, R.A.: Thermal kinetics and reactive mechanism of cellulose nitrate decomposition by traditional multi kinetics and modeling calculation under isothermal and non-isothermal conditions. Ind. Crops Prod. 145, 112085 (2020)

    Article  CAS  Google Scholar 

  42. Tarchoun, A.F., Trache, D., Klapötke, T.M., Chelouche, S., Derradji, M., Bessa, W., Mezroua, A.: A promising energetic polymer from Posidonia oceanica brown algae: synthesis, characterization, and kinetic modeling. Macromol. Chem. Phys. 220, 1900358 (2019)

    Article  CAS  Google Scholar 

  43. Trache, D., Khimeche, K., Mezroua, A., Benziane, M.: Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. J. Therm. Anal. Calorim. 124, 1485–1496 (2016)

    Article  CAS  Google Scholar 

  44. Luo, Q., Zhu, J., Li, Z., Duan, X., Pei, C., Mao, C.: The solution characteristics of nitrated bacterial cellulose in acetone. New J. Chem. 42, 18252–18258 (2018)

    Article  CAS  Google Scholar 

  45. Trache, D., Tarchoun, A.F., Chelouche, S., Khimeche, K.: New insights on the compatibility of nitrocellulose with aniline-based compounds. Propell. Explos. Pyrot. 44, 970–979 (2019)

    Article  CAS  Google Scholar 

  46. Trache, D., Maggi, F., Palmucci, I., DeLuca, L.T.: Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants. J. Therm. Anal. Calorim. 132, 1601–1615 (2018)

    Article  CAS  Google Scholar 

  47. Trache, D., Abdelaziz, A., Siouani, B.: A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. J. Therm. Anal. Calorim. 128, 335–348 (2017)

    Article  CAS  Google Scholar 

  48. Sbirrazzuoli, N.: Determination of pre-exponential factor and reaction mechanism in a model-free way. Thermochim. Acta 178707 (2020).

  49. Vyazovkin, S., Burnham, A.K., Favergeon, L., Koga, N., Moukhina, E., Pérez-Maqueda, L.A., Sbirrazzuoli, N.: ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim. Acta 178597 (2020).

  50. Granado, L., Sbirrazzuoli, N.: Isoconversional computations for nonisothermal kinetic predictions. Thermochim. Acta 697, 178859 (2021)

    Article  CAS  Google Scholar 

  51. Chelouche, S., Trache, D., Tarchoun, A.F., Abdelaziz, A., Khimeche, K., Mezroua, A.: Organic eutectic mixture as efficient stabilizer for nitrocellulose: kinetic modeling and stability assessment. Thermochim. Acta 673, 78–91 (2019)

    Article  CAS  Google Scholar 

  52. Benhammada, A., Trache, D., Kesraoui, M., Tarchoun, A.F., Chelouche, S., Mezroua, A.: Synthesis and characterization of α-Fe2O3 nanoparticles from different precursors and their catalytic effect on the thermal decomposition of nitrocellulose. Thermochim. Acta 178570 (2020).

  53. Hanafi, S., Trache, D., He, W., Xie, W.-X., Mezroua, A., Yan, Q.-L.: Catalytic effect of 2D-layered energetic hybrid crystals on the thermal decomposition of 3-nitro-2, 4-dihydro-3H-1, 2, 4-triazol-5-one (NTO). Thermochim. Acta 692, 178747 (2020)

    Article  CAS  Google Scholar 

  54. He, Y., He, Y., Liu, J., Li, P., Chen, M., Wei, R., Wang, J.: Experimental study on the thermal decomposition and combustion characteristics of nitrocellulose with different alcohol humectants. J. Hazard Mater 340, 202–212 (2017)

    Article  CAS  PubMed  Google Scholar 

  55. de la Ossa, M.Á.F., López-López, M., Torre, M., García-Ruiz, C.: Analytical techniques in the study of highly-nitrated nitrocellulose. TrAC Trends Anal. Chem. 30, 1740–1755 (2011)

    Article  CAS  Google Scholar 

  56. Paraskos, A.J.: Energetic polymers: synthesis and applications. Energetic materials, pp. 91–134. Springer, New York (2017)

    Google Scholar 

  57. Betzler, F.M., Hartdegen, V.A., Klapötke, T.M., Sproll, S.M.: A new energetic binder: glycidyl nitramine polymer. Cent. Eur. J. Energ. Mater. 13 (2016).

  58. Badgujar, D., Talawar, M., Zarko, V., Mahulikar, P.: New directions in the area of modern energetic polymers: an overview. Combus. Explos. Shock Waves 53, 371–387 (2017)

    Article  Google Scholar 

  59. Tarchoun, A.F., Trache, D., Klapötke, T.M., Krumm, B.: New insensitive nitrogen-rich energetic polymers based on amino-functionalized cellulose and microcrystalline cellulose: synthesis and characterization. Fuel 277, 118258 (2020)

    Article  CAS  Google Scholar 

  60. Beroual, M., Trache, D., Mehelli, O., Boumaza, L., Tarchoun, A.F., Derradji, M., Khimeche, K.: Effect of the delignification process on the physicochemical properties and thermal stability of microcrystalline cellulose extracted from date palm fronds. Waste Biomass Valori 1–15 (2020).

  61. Hachaichi, A., Kouini, B., Kian, L.K., Asim, M., Jawaid, M.: Extraction and characterization of microcrystalline cellulose from date palm fibers using successive chemical treatments. J. Polymers Environ. 1–10 (2021).

  62. Meftahi, A., Khajavi, R., Rashidi, A., Rahimi, M., Bahador, A.: Preventing the collapse of 3D bacterial cellulose network via citric acid. J. Nanostruct. Chem. 8, 311–320 (2018)

    Article  CAS  Google Scholar 

  63. Hu, L.-B., Huang, X.-Y., Zhang, S., Chen, X., Dong, X.-H., Jin, H., Jiang, Z.-Y., Gong, X.-R., Xie, Y.-X., Li, C.: MoO3 structures transition from nanoflowers to nanorods and their sensing performances. (2021).

  64. Mokhena, T.C., Sadiku, E.R., Mochane, M.J., Ray, S.S., John, M.J., Mtibe, A.: Mechanical properties of cellulose nanofibril papers and their bionanocomposites: a review. Carbohyd. Polym. 118507 (2021).

  65. Wu, H., Zhang, F., Zhang, Z.: Droplet breakup and coalescence of an internal-mixing twin-fluid spray. Phys. Fluids 33, 013317 (2021)

    Article  CAS  Google Scholar 

  66. Wang, X., Li, C., Zhang, Y., Said, Z., Debnath, S., Sharma, S., Yang, M., Gao, T.: Influence of texture shape and arrangement on nanofluid minimum quantity lubrication turning. Int. J. Adv. Manuf. Technol. 1–16 (2021).

  67. Benhamou, A.A., Kassab, Z., Nadifiyine, M., Salim, M.H., Sehaqui, H., Moubarik, A., El Achaby, M.: Extraction, characterization and chemical functionalization of phosphorylated cellulose derivatives from giant reed plant. Cellulose 1–18 (2021).

  68. Fu, Y., Chen, H., Guo, R., Huang, Y., Toroghinejad, M.R.: Extraordinary strength-ductility in gradient amorphous structured Zr-based alloy. J. Alloys Compds. 888, 161507 (2021).

  69. Zhang, X., Tang, Y., Zhang, F., Lee, C.S.: A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 6, 1502588 (2016)

    Article  CAS  Google Scholar 

  70. Huo, J., Fu, L., Zhao, C., He, C.: Hydrogen generation of ammonia borane hydrolysis catalyzed by Fe22@ Co58 core-shell structure. Chinese Chem. Lett. (2021).

  71. Trache, D., Tarchoun, A.F.: Stabilizers for nitrate ester-based energetic materials and their mechanism of action: a state-of-the-art review. J. Mater. Sci. 53, 100–123 (2018)

    Article  CAS  Google Scholar 

  72. Sun, R., He, C., Fu, L., Huo, J., Zhao, C., Li, X., Song, Y., Wang, S.: Defect engineering for high-selection-performance of NO reduction to NH3 over CeO2 (111) surface: a DFT study. Chinese Chem. Lett. (2021).

  73. He, C., Wang, H., Fu, L., Huo, J., Zheng, Z., Zhao, C., An, M.: Principles for designing CO2 adsorption catalyst: Serving thermal conductivity as the determinant for reactivity. Chinese Chem. Lett. (2021).

  74. Cieślak, K., Gańczyk-Specjalska, K., Drożdżewska-Szymańska, K., Uszyński, M.: Effect of stabilizers and nitrogen content on thermal properties of nitrocellulose granules. J. Therm. Anal. Calorim. 1–12 (2020).

  75. Cherif, M.F., Trache, D., Benaliouche, F., Chelouche, S., Tarchoun, A.F., Mezroua, A.: Effect of Kraft lignins on the stability and thermal decomposition kinetics of nitrocellulose. Thermochim. Acta 692, 178732 (2020)

    Article  CAS  Google Scholar 

  76. Zhao, Y., Jin, B., Peng, R., Ding, L., Zheng, T.: Novel fullerene-based stabilizer for scavenging nitroxide radicals and its behavior during thermal decomposition of nitrocellulose. J. Hazard Mater. 391, 121857 (2020)

    Article  CAS  PubMed  Google Scholar 

  77. Mianowski, A., Radko, T., Siudyga, T.: Kinetic compensation effect of isoconversional methods. React. Kinet. Mech. Catal. 132, 37–58 (2021)

    Article  CAS  Google Scholar 

  78. Wu, H., Zhang, F., Zhang, Z.: Fundamental spray characteristics of air-assisted injection system using aviation kerosene. Fuel 286, 119420 (2021)

    Article  CAS  Google Scholar 

  79. He, C., Wang, J., Fu, L., Zhao, C., Huo, J.: Associative vs. dissociative mechanism: electrocatalysis of nitric oxide to ammonia. Chinese Chem. Lett. (2021).

  80. Li, Y., Macdonald, D.D., Yang, J., Qiu, J., Wang, S.: Point defect model for the corrosion of steels in supercritical water: Part I, film growth kinetics. Corros. Sci. 163, 108280 (2020)

    Article  CAS  Google Scholar 

  81. Wang, R., Xie, H., Lai, X., Liu, J.-B., Li, J., Qiu, G.: Visible light-enabled iron-catalyzed selenocyclization of N-methoxy-2-alkynylbenzamide. Mol. Catal. 515, 111881 (2021)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmed Fouzi Tarchoun or Djalal Trache.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarchoun, A.F., Sayah, Z.B.D., Trache, D. et al. Towards investigating the characteristics and thermal kinetic behavior of emergent nanostructured nitrocellulose prepared using various sulfonitric media. J Nanostruct Chem 12, 963–977 (2022). https://doi.org/10.1007/s40097-021-00466-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-021-00466-x

Keywords

Navigation