Skip to main content
Erschienen in: Integrating Materials and Manufacturing Innovation 1/2017

13.03.2017 | Research

Process-Structure Linkages Using a Data Science Approach: Application to Simulated Additive Manufacturing Data

verfasst von: Evdokia Popova, Theron M. Rodgers, Xinyi Gong, Ahmet Cecen, Jonathan D. Madison, Surya R. Kalidindi

Erschienen in: Integrating Materials and Manufacturing Innovation | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A novel data science workflow is developed and demonstrated to extract process-structure linkages (i.e., reduced-order model) for microstructure evolution problems when the final microstructure depends on (simulation or experimental) processing parameters. This workflow consists of four main steps: data pre-processing, microstructure quantification, dimensionality reduction, and extraction/validation of process-structure linkages. Methods that can be employed within each step vary based on the type and amount of available data. In this paper, this data-driven workflow is applied to a set of synthetic additive manufacturing microstructures obtained using the Potts-kinetic Monte Carlo (kMC) approach. Additive manufacturing techniques inherently produce complex microstructures that can vary significantly with processing conditions. Using the developed workflow, a low-dimensional data-driven model was established to correlate process parameters with the predicted final microstructure. Additionally, the modular workflows developed and presented in this work facilitate easy dissemination and curation by the broader community.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat McDowell DL, Kalidindi SR (2016) The materials innovation ecosystem: a key enabler for the materials genome initiative. MRS Bull 41(04):326–337CrossRef McDowell DL, Kalidindi SR (2016) The materials innovation ecosystem: a key enabler for the materials genome initiative. MRS Bull 41(04):326–337CrossRef
2.
Zurück zum Zitat Drosback M (2014) Materials Genome Initiative: Advances and Initiatives. JOM. 66: 334–335 Drosback M (2014) Materials Genome Initiative: Advances and Initiatives. JOM. 66: 334–335
3.
Zurück zum Zitat Breneman CM, Brinson LC, Schadler LS, Natarajan B, Krein M, Wu K, & Xu H (2013) Stalking the materials genome: a data-driven approach to the virtual design of nanostructured polymers. Adv Funct Mater 23(46):5746–5752CrossRef Breneman CM, Brinson LC, Schadler LS, Natarajan B, Krein M, Wu K, & Xu H (2013) Stalking the materials genome: a data-driven approach to the virtual design of nanostructured polymers. Adv Funct Mater 23(46):5746–5752CrossRef
4.
Zurück zum Zitat Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S et al (2013) Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater 1(1):011002CrossRef Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S et al (2013) Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater 1(1):011002CrossRef
5.
Zurück zum Zitat Holdren JP (2011) Materials genome initiative for global competitiveness. National Science and Technology Council OSTP. Washington, USA Holdren JP (2011) Materials genome initiative for global competitiveness. National Science and Technology Council OSTP. Washington, USA
6.
Zurück zum Zitat Kalidindi SR, Medford AJ, McDowell DL (2016) Vision for data and informatics in the future materials innovation ecosystem. JOM 68(8):2126–2137CrossRef Kalidindi SR, Medford AJ, McDowell DL (2016) Vision for data and informatics in the future materials innovation ecosystem. JOM 68(8):2126–2137CrossRef
7.
Zurück zum Zitat Panchal JH, Kalidindi SR, McDowell DL (2013) Key computational modeling issues in integrated computational materials engineering. Comput Aided Des 45(1):4–25CrossRef Panchal JH, Kalidindi SR, McDowell DL (2013) Key computational modeling issues in integrated computational materials engineering. Comput Aided Des 45(1):4–25CrossRef
8.
Zurück zum Zitat Pollock TM, Allison JE, Backman DG et al (2008) Integrated computational materials engineering: a transformational discipline for improved competitiveness and national security. Washington DC, The National Acamedies Press Pollock TM, Allison JE, Backman DG et al (2008) Integrated computational materials engineering: a transformational discipline for improved competitiveness and national security. Washington DC, The National Acamedies Press
9.
Zurück zum Zitat Schmitz GJ, Prahl U (2014) ICMEg—the Integrated Computational Materials Engineering Expert Group—a new European coordination action. Integr Mater Manuf Innov 3(1):2CrossRef Schmitz GJ, Prahl U (2014) ICMEg—the Integrated Computational Materials Engineering Expert Group—a new European coordination action. Integr Mater Manuf Innov 3(1):2CrossRef
10.
Zurück zum Zitat Spanos G, Allison J, Cowles B, Deloach J, Pollock T (2013) Integrated Computational Materials Engineering (ICME): implementing ICME in the aerospace, automotive, and maritime industries, Tech. rep., The Minerals, Metals & Materials Society (TMS) Spanos G, Allison J, Cowles B, Deloach J, Pollock T (2013) Integrated Computational Materials Engineering (ICME): implementing ICME in the aerospace, automotive, and maritime industries, Tech. rep., The Minerals, Metals & Materials Society (TMS)
11.
Zurück zum Zitat Voorhees P and G Spanos (2015) Modeling across scales: a roadmapping study for connecting materials models and simulations across length and time scales. Tech. rep., The Minerals, Metals & Materials Society (TMS) Voorhees P and G Spanos (2015) Modeling across scales: a roadmapping study for connecting materials models and simulations across length and time scales. Tech. rep., The Minerals, Metals & Materials Society (TMS)
12.
Zurück zum Zitat Kalidindi SR (2015) Hierarchical materials informatics: Novel analytics for materials data. Elsevier Kalidindi SR (2015) Hierarchical materials informatics: Novel analytics for materials data. Elsevier
13.
Zurück zum Zitat Krein MP, Natarajan B, Schadler LS et al (2012) Development of materials informatics tools and infrastructure to enable high throughput materials design. MRS Online Proceedings Library. 1425: doi:10.1557/opl.2012.57. Krein MP, Natarajan B, Schadler LS et al (2012) Development of materials informatics tools and infrastructure to enable high throughput materials design. MRS Online Proceedings Library. 1425: doi:10.​1557/​opl.​2012.​57.
14.
Zurück zum Zitat Peurrung L, Ferris K, Osman T (2007) The materials informatics workshop: theory and application. JOM 59(3):50CrossRef Peurrung L, Ferris K, Osman T (2007) The materials informatics workshop: theory and application. JOM 59(3):50CrossRef
15.
Zurück zum Zitat Cebon D, Ashby MF (2006) Engineering materials informatics. MRS Bull 31(12):1004–1012CrossRef Cebon D, Ashby MF (2006) Engineering materials informatics. MRS Bull 31(12):1004–1012CrossRef
16.
Zurück zum Zitat Liu Z-K, Chen L-Q, Rajan K (2006) Linking length scales via materials informatics. JOM 58(11):42–50CrossRef Liu Z-K, Chen L-Q, Rajan K (2006) Linking length scales via materials informatics. JOM 58(11):42–50CrossRef
17.
18.
Zurück zum Zitat Kalidindi SR (2015) Data science and cyberinfrastructure: critical enablers for accelerated development of hierarchical materials. Int Mater Rev 60(3):150–168CrossRef Kalidindi SR (2015) Data science and cyberinfrastructure: critical enablers for accelerated development of hierarchical materials. Int Mater Rev 60(3):150–168CrossRef
19.
Zurück zum Zitat Kalidindi SR and De Graef M (2015) Materials data science: current status and future outlook. Annu Rev Mater Res 45:171–193CrossRef Kalidindi SR and De Graef M (2015) Materials data science: current status and future outlook. Annu Rev Mater Res 45:171–193CrossRef
20.
Zurück zum Zitat Kalidindi SR, Brough DB, Li S, Cecen A, Blekh AL, Congo FYP, et al (2016) Role of materials data science and informatics in accelerated materials innovation. MRS Bull 41(8):596–602CrossRef Kalidindi SR, Brough DB, Li S, Cecen A, Blekh AL, Congo FYP, et al (2016) Role of materials data science and informatics in accelerated materials innovation. MRS Bull 41(8):596–602CrossRef
21.
Zurück zum Zitat McDowell DL, Olson GB (2008) Concurrent design of hierarchical materials and structures. Sci Model Simul 15:207–240CrossRef McDowell DL, Olson GB (2008) Concurrent design of hierarchical materials and structures. Sci Model Simul 15:207–240CrossRef
22.
Zurück zum Zitat Olson GB (2000) Pathways of discovery designing a new material world. Science 228(12):933–998 Olson GB (2000) Pathways of discovery designing a new material world. Science 228(12):933–998
23.
Zurück zum Zitat Olson GB (1997) Computational design of hierarchically structured materials. Science 277(29):1237–1242CrossRef Olson GB (1997) Computational design of hierarchically structured materials. Science 277(29):1237–1242CrossRef
24.
Zurück zum Zitat Olson GB (1997) Systems design of hierarchically structured materials: advanced steels. J Computer-Aided Mater Des 4:143–156CrossRef Olson GB (1997) Systems design of hierarchically structured materials: advanced steels. J Computer-Aided Mater Des 4:143–156CrossRef
25.
Zurück zum Zitat McDowell DL, Panchal J, Choi HJ, Seepersad C, Allen J, et al (2009). Integrated design of multiscale, multifunctional materials and products. Butterworth-Heinemann McDowell DL, Panchal J, Choi HJ, Seepersad C, Allen J, et al (2009). Integrated design of multiscale, multifunctional materials and products. Butterworth-Heinemann
26.
Zurück zum Zitat Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928CrossRef Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928CrossRef
27.
Zurück zum Zitat Seifi M, Salem A, Beuth J, Harrysson O, et al (2016) Overview of materials qualification needs for metal additive manufacturing. JOM 68(3):747–764CrossRef Seifi M, Salem A, Beuth J, Harrysson O, et al (2016) Overview of materials qualification needs for metal additive manufacturing. JOM 68(3):747–764CrossRef
28.
Zurück zum Zitat Brackett, D., I. Ashcroft, and R. Hague (2011) Topology optimization for additive manufacturing. In Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX Brackett, D., I. Ashcroft, and R. Hague (2011) Topology optimization for additive manufacturing. In Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX
29.
Zurück zum Zitat Holesinger TG, Carpenter JS, Lienert TJ, Patterson BM, Papin PA, Swenson H & Cordes NL (2016). Characterization of an aluminum alloy hemispherical shell fabricated via direct metal laser melting. JOM, 68(3), 1000-1011CrossRef Holesinger TG, Carpenter JS, Lienert TJ, Patterson BM, Papin PA, Swenson H & Cordes NL (2016). Characterization of an aluminum alloy hemispherical shell fabricated via direct metal laser melting. JOM, 68(3), 1000-1011CrossRef
30.
Zurück zum Zitat Thijs L, Verhaeghe F, Craeghs T, Van Humbeeck J, & Kruth JP (2010) A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater 58(9):3303–3312CrossRef Thijs L, Verhaeghe F, Craeghs T, Van Humbeeck J, & Kruth JP (2010) A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater 58(9):3303–3312CrossRef
31.
Zurück zum Zitat Dehoff RR, Kirka MM, Sames WJ, Bilheux H, Tremsin AS, Lowe LE, & Babu SS (2015) Site specific control of crystallographic grain orientation through electron beam additive manufacturing. Mater Sci Technol 31(8):931–938CrossRef Dehoff RR, Kirka MM, Sames WJ, Bilheux H, Tremsin AS, Lowe LE, & Babu SS (2015) Site specific control of crystallographic grain orientation through electron beam additive manufacturing. Mater Sci Technol 31(8):931–938CrossRef
32.
Zurück zum Zitat Niendorf T, Leuders S, Riemer A, Brenne F, Tröster T, Richard HA, & Schwarze D (2014) Functionally graded alloys obtained by additive manufacturing. Adv Eng Mater 16(7):857–861CrossRef Niendorf T, Leuders S, Riemer A, Brenne F, Tröster T, Richard HA, & Schwarze D (2014) Functionally graded alloys obtained by additive manufacturing. Adv Eng Mater 16(7):857–861CrossRef
33.
Zurück zum Zitat Martukanitz R, Michaleris P, Palmer T, DebRoy T, Liu ZK, Otis R et al (2014) Toward an integrated computational system for describing the additive manufacturing process for metallic materials. Addit Manuf 1-4:52–63CrossRef Martukanitz R, Michaleris P, Palmer T, DebRoy T, Liu ZK, Otis R et al (2014) Toward an integrated computational system for describing the additive manufacturing process for metallic materials. Addit Manuf 1-4:52–63CrossRef
34.
Zurück zum Zitat Witherell P, Feng S, Simpson TW, Saint John DB et al (2014) Toward metamodels for composable and reusable additive manufacturing process models. J Manuf Sci Eng 136(6):061025CrossRef Witherell P, Feng S, Simpson TW, Saint John DB et al (2014) Toward metamodels for composable and reusable additive manufacturing process models. J Manuf Sci Eng 136(6):061025CrossRef
35.
Zurück zum Zitat King WE, Anderson AT, Ferencz RM, Hodge NE, Kamath C, Khairallah SA, & Rubenchik AM (2015) Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl Phys Rev 2(4):041304CrossRef King WE, Anderson AT, Ferencz RM, Hodge NE, Kamath C, Khairallah SA, & Rubenchik AM (2015) Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl Phys Rev 2(4):041304CrossRef
36.
Zurück zum Zitat Huang Y, Leu MC, Mazumder J, & Donmez A (2014) Additive manufacturing: current state, future potential, gaps and needs, and recommendations. J Manuf Sci Eng 137(1):014001CrossRef Huang Y, Leu MC, Mazumder J, & Donmez A (2014) Additive manufacturing: current state, future potential, gaps and needs, and recommendations. J Manuf Sci Eng 137(1):014001CrossRef
37.
Zurück zum Zitat Regli W, Rossignac J, Shapiro V & Srinivasan V (2016) The new frontiers in computational modeling of material structures. Comput Aided Des 77:73–85 Regli W, Rossignac J, Shapiro V & Srinivasan V (2016) The new frontiers in computational modeling of material structures. Comput Aided Des 77:73–85
38.
Zurück zum Zitat Kamath C (2016) Data mining and statistical inference in selective laser melting. Int J Adv Manuf Technol 86(5–8):1659–1677CrossRef Kamath C (2016) Data mining and statistical inference in selective laser melting. Int J Adv Manuf Technol 86(5–8):1659–1677CrossRef
39.
Zurück zum Zitat Garcia AL, Tikare V, Holm EA (2008) Three-dimensional simulation of grain growth in a thermal gradient with non-uniform grain boundary mobility. Scr Mater 59(6):661–664CrossRef Garcia AL, Tikare V, Holm EA (2008) Three-dimensional simulation of grain growth in a thermal gradient with non-uniform grain boundary mobility. Scr Mater 59(6):661–664CrossRef
40.
Zurück zum Zitat Madison JD, Tikare V, Holm EA (2012) A hybrid simulation methodology for modeling dynamic recrystallization in UO 2 LWR nuclear fuels. J Nucl Mater 425(1):173–180CrossRef Madison JD, Tikare V, Holm EA (2012) A hybrid simulation methodology for modeling dynamic recrystallization in UO 2 LWR nuclear fuels. J Nucl Mater 425(1):173–180CrossRef
41.
Zurück zum Zitat Tikare V, Hernandez-Rivera E, Madison JD, Holm EA, Patterson BR, & Homer ER (2013) Hybrid models for the simulation of microstructural evolution influenced by coupled, multiple physical processes, Brigham Young University, Provo, UT; Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States) Tikare V, Hernandez-Rivera E, Madison JD, Holm EA, Patterson BR, & Homer ER (2013) Hybrid models for the simulation of microstructural evolution influenced by coupled, multiple physical processes, Brigham Young University, Provo, UT; Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
42.
Zurück zum Zitat Plimpton S, Battaile C, Chandross M, Holm L, Thompson A, Tikare V, & Slepoy A (2009) Crossing the mesoscale no-man’s land via parallel kinetic Monte Carlo. Sandia National Laboratory Plimpton S, Battaile C, Chandross M, Holm L, Thompson A, Tikare V, & Slepoy A (2009) Crossing the mesoscale no-man’s land via parallel kinetic Monte Carlo. Sandia National Laboratory
43.
Zurück zum Zitat Holm EA, Battaile CC (2001) The computer simulation of microstructural evolution. JOM 53(9):20–23CrossRef Holm EA, Battaile CC (2001) The computer simulation of microstructural evolution. JOM 53(9):20–23CrossRef
44.
Zurück zum Zitat Rodgers TM, J Madison, and V Tikare (2016) Predicting mesoscale microstructural evolution in electron beam welding. JOM (5):1419–1426CrossRef Rodgers TM, J Madison, and V Tikare (2016) Predicting mesoscale microstructural evolution in electron beam welding. JOM (5):1419–1426CrossRef
45.
Zurück zum Zitat Rodgers TM, J Madison, and V Tikare (2016) Simulation of metal additive manufacturing microstructures using kinetic Monte Carlo. Computational Materials Science - submitted for review Rodgers TM, J Madison, and V Tikare (2016) Simulation of metal additive manufacturing microstructures using kinetic Monte Carlo. Computational Materials Science - submitted for review
46.
Zurück zum Zitat Parimi LL, Ravi GA, Clark D, & Attallah MM (2014) Microstructural and texture development in direct laser fabricated IN718. Mater Charact 89:102–111CrossRef Parimi LL, Ravi GA, Clark D, & Attallah MM (2014) Microstructural and texture development in direct laser fabricated IN718. Mater Charact 89:102–111CrossRef
47.
Zurück zum Zitat Gupta A, Cecen A, Goyal S, Singh AK, & Kalidindi SR (2015) Structure–property linkages using a data science approach: application to a non-metallic inclusion/steel composite system. Acta Mater 91:239–254CrossRef Gupta A, Cecen A, Goyal S, Singh AK, & Kalidindi SR (2015) Structure–property linkages using a data science approach: application to a non-metallic inclusion/steel composite system. Acta Mater 91:239–254CrossRef
48.
Zurück zum Zitat Steinmetz P, Yabansu YC, Hötzer J, Jainta M, Nestler B, & Kalidindi SR (2016) Analytics for microstructure datasets produced by phase-field simulations. Acta Mater 103:192–203CrossRef Steinmetz P, Yabansu YC, Hötzer J, Jainta M, Nestler B, & Kalidindi SR (2016) Analytics for microstructure datasets produced by phase-field simulations. Acta Mater 103:192–203CrossRef
49.
Zurück zum Zitat Raabe D (2002) Cellular automata in materials science with particular reference to recrystallization simulation. Annu Rev Mater Res 32(1):53–76CrossRef Raabe D (2002) Cellular automata in materials science with particular reference to recrystallization simulation. Annu Rev Mater Res 32(1):53–76CrossRef
50.
Zurück zum Zitat Bernacki M, Resk H, Coupez T (2009) Finite element model of primary recrystallization in polycrystalline aggregates using a level set framework. Model Simul Mater Sci Eng 17(6):064006CrossRef Bernacki M, Resk H, Coupez T (2009) Finite element model of primary recrystallization in polycrystalline aggregates using a level set framework. Model Simul Mater Sci Eng 17(6):064006CrossRef
51.
Zurück zum Zitat Cunningham R, Narra SP, Ozturk T, Beuth J, & Rollett AD (2016) Evaluating the effect of processing parameters on porosity in electron beam melted Ti-6Al-4V via synchrotron X-ray microtomography. JOM 68(3):765–771CrossRef Cunningham R, Narra SP, Ozturk T, Beuth J, & Rollett AD (2016) Evaluating the effect of processing parameters on porosity in electron beam melted Ti-6Al-4V via synchrotron X-ray microtomography. JOM 68(3):765–771CrossRef
52.
Zurück zum Zitat Rama P, Liu Y, Chen R, Ostadi H et al. (2010) An X-ray tomography based lattice Boltzmann simulation study on gas diffusion layers of polymer electrolyte fuel cells. J Fuel Cell Sci Technol 7(3):031015CrossRef Rama P, Liu Y, Chen R, Ostadi H et al. (2010) An X-ray tomography based lattice Boltzmann simulation study on gas diffusion layers of polymer electrolyte fuel cells. J Fuel Cell Sci Technol 7(3):031015CrossRef
53.
Zurück zum Zitat Kalidindi SR, Niezgoda SR, Salem AA (2011) Microstructure informatics using higher-order statistics and efficient data-mining protocols. JOM 63(4):34–41CrossRef Kalidindi SR, Niezgoda SR, Salem AA (2011) Microstructure informatics using higher-order statistics and efficient data-mining protocols. JOM 63(4):34–41CrossRef
54.
Zurück zum Zitat Adams BL, Kalidindi S, Fullwood DT (2013) Microstructure-sensitive design for performance optimization. Butterworth-Heinemann Adams BL, Kalidindi S, Fullwood DT (2013) Microstructure-sensitive design for performance optimization. Butterworth-Heinemann
56.
Zurück zum Zitat Agrawal A, Deshpande PD, Cecen A, Basavarsu GP, Choudhary AN & Kalidindi SR (2014) Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters. Integr Mater Manuf Innov 3(8):1–19 Agrawal A, Deshpande PD, Cecen A, Basavarsu GP, Choudhary AN & Kalidindi SR (2014) Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters. Integr Mater Manuf Innov 3(8):1–19
57.
Zurück zum Zitat Lu B, Torquato S (1992) Lineal-path function for random heterogeneous materials. Phys Rev A 45(2):922–929CrossRef Lu B, Torquato S (1992) Lineal-path function for random heterogeneous materials. Phys Rev A 45(2):922–929CrossRef
58.
Zurück zum Zitat Torquato S, Lu B (1993) Chord-length distribution function for two-phase random media. Phys Rev E 47(4):2950CrossRef Torquato S, Lu B (1993) Chord-length distribution function for two-phase random media. Phys Rev E 47(4):2950CrossRef
59.
Zurück zum Zitat D Turner SN, Kalidindi SR (2016) Efficient computation of the angularly resolved chord length distributions and lineal path functions in large microstructure datasets. Modelling and Simulation in Materials Science and Engineering doi:10.1088/0965-0393/24/7/075002.CrossRef D Turner SN, Kalidindi SR (2016) Efficient computation of the angularly resolved chord length distributions and lineal path functions in large microstructure datasets. Modelling and Simulation in Materials Science and Engineering doi:10.​1088/​0965-0393/​24/​7/​075002.CrossRef
60.
Zurück zum Zitat Mardia KV, Kent JT, Bibby JM (1980) Multivariate analysis (probability and mathematical statistics). Academic Press, London Mardia KV, Kent JT, Bibby JM (1980) Multivariate analysis (probability and mathematical statistics). Academic Press, London
61.
Zurück zum Zitat Fodor IK (2002) A survey of dimension reduction techniques. Center for Applied Scientific Computing, Lawrence Livermore National Laboratory 9:1–18 Fodor IK (2002) A survey of dimension reduction techniques. Center for Applied Scientific Computing, Lawrence Livermore National Laboratory 9:1–18
62.
Zurück zum Zitat Hyvärinen, A. (1999) Survey on independent component analysis. Neural Computing Surveys 2(4):94–128 Hyvärinen, A. (1999) Survey on independent component analysis. Neural Computing Surveys 2(4):94–128
63.
Zurück zum Zitat Quinlan JR (1992) Learning with continuous classes. In 5th Australian joint conference on artificial intelligence. Singapore Quinlan JR (1992) Learning with continuous classes. In 5th Australian joint conference on artificial intelligence. Singapore
64.
Zurück zum Zitat Hearst MA, Dumais ST, Osuna E, Platt J, & Scholkopf B (1998) Support vector machines. IEEE Intell Syst Appl 13(4):18–28CrossRef Hearst MA, Dumais ST, Osuna E, Platt J, & Scholkopf B (1998) Support vector machines. IEEE Intell Syst Appl 13(4):18–28CrossRef
65.
Zurück zum Zitat Shao J (1993) Linear model selection by cross-validation. J Am Stat Assoc 88(422):486–494CrossRef Shao J (1993) Linear model selection by cross-validation. J Am Stat Assoc 88(422):486–494CrossRef
66.
Zurück zum Zitat Snee RD (1977) Validation of regression models: methods and examples. Technometrics 19(4):415–428CrossRef Snee RD (1977) Validation of regression models: methods and examples. Technometrics 19(4):415–428CrossRef
67.
Zurück zum Zitat Pedregosa F, Varoquaux G, Gramfort et al. (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12(Oct):2825–2830 Pedregosa F, Varoquaux G, Gramfort et al. (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12(Oct):2825–2830
68.
Zurück zum Zitat Rodgers T (2015) Exploration of process-structure linkages in simulated additive manufacturing microstructures. Harvard Dataverse V1. doi:10.7910/DVN/KJMK9Z Rodgers T (2015) Exploration of process-structure linkages in simulated additive manufacturing microstructures. Harvard Dataverse V1. doi:10.​7910/​DVN/​KJMK9Z
69.
Zurück zum Zitat Kalidindi SR, Gomberg JA, Trautt ZT & Becker CA (2015) Application of data science tools to quantify and distinguish between structures and models in molecular dynamics datasets. Nanotechnology 26(34):344006CrossRef Kalidindi SR, Gomberg JA, Trautt ZT & Becker CA (2015) Application of data science tools to quantify and distinguish between structures and models in molecular dynamics datasets. Nanotechnology 26(34):344006CrossRef
70.
Zurück zum Zitat Armstrong RW, Codd I, Douthwaite RM, & Petch NJ (1962) The plastic deformation of polycrystalline aggregates. Philos Mag 7(73):45–58CrossRef Armstrong RW, Codd I, Douthwaite RM, & Petch NJ (1962) The plastic deformation of polycrystalline aggregates. Philos Mag 7(73):45–58CrossRef
71.
Zurück zum Zitat Team RC (2013) R: a language and environment for statistical computing 2013 (Global Biodiversity Information Facility, Copenhagen, Denmark) Team RC (2013) R: a language and environment for statistical computing 2013 (Global Biodiversity Information Facility, Copenhagen, Denmark)
72.
Zurück zum Zitat Berthold MR, Cebron N, Dill F, Gabriel TR et al. (2009) KNIME—the Konstanz information miner: version 2.0 and beyond. AcM SIGKDD Explor Newsl 11(1):26–31 Berthold MR, Cebron N, Dill F, Gabriel TR et al. (2009) KNIME—the Konstanz information miner: version 2.0 and beyond. AcM SIGKDD Explor Newsl 11(1):26–31
73.
Zurück zum Zitat Çeçen A, Fast T, Kumbur EC, & Kalidindi SR (2014) A data-driven approach to establishing microstructure–property relationships in porous transport layers of polymer electrolyte fuel cells. J Power Sources 245:144–153CrossRef Çeçen A, Fast T, Kumbur EC, & Kalidindi SR (2014) A data-driven approach to establishing microstructure–property relationships in porous transport layers of polymer electrolyte fuel cells. J Power Sources 245:144–153CrossRef
74.
Zurück zum Zitat Niezgoda SR, Yabansu YC, Kalidindi SR (2011) Understanding and visualizing microstructure and microstructure variance as a stochastic process. Acta Mater 59(16):6387–6400CrossRef Niezgoda SR, Yabansu YC, Kalidindi SR (2011) Understanding and visualizing microstructure and microstructure variance as a stochastic process. Acta Mater 59(16):6387–6400CrossRef
75.
Zurück zum Zitat Sinha P (2013) Multivariate polynomial regression in data mining: methodology, problems and solutions. Int J Sci Eng Res 4(12):962–965 Sinha P (2013) Multivariate polynomial regression in data mining: methodology, problems and solutions. Int J Sci Eng Res 4(12):962–965
78.
Zurück zum Zitat Schlüter S, Vogel H-J (2011) On the reconstruction of structural and functional properties in random heterogeneous media. Adv Water Resour 34(2):314–325CrossRef Schlüter S, Vogel H-J (2011) On the reconstruction of structural and functional properties in random heterogeneous media. Adv Water Resour 34(2):314–325CrossRef
79.
Zurück zum Zitat Yeong CLY, Torquato S (1998) Reconstructing random media. Phys Rev E 57(1):495–506CrossRef Yeong CLY, Torquato S (1998) Reconstructing random media. Phys Rev E 57(1):495–506CrossRef
80.
Zurück zum Zitat Worlitschek J, Hocker T, Mazzotti M (2005) Restoration of PSD from chord length distribution data using the method of projections onto convex sets. Part Part Syst Charact 22(2):81–98CrossRef Worlitschek J, Hocker T, Mazzotti M (2005) Restoration of PSD from chord length distribution data using the method of projections onto convex sets. Part Part Syst Charact 22(2):81–98CrossRef
Metadaten
Titel
Process-Structure Linkages Using a Data Science Approach: Application to Simulated Additive Manufacturing Data
verfasst von
Evdokia Popova
Theron M. Rodgers
Xinyi Gong
Ahmet Cecen
Jonathan D. Madison
Surya R. Kalidindi
Publikationsdatum
13.03.2017
Verlag
Springer International Publishing
Erschienen in
Integrating Materials and Manufacturing Innovation / Ausgabe 1/2017
Print ISSN: 2193-9764
Elektronische ISSN: 2193-9772
DOI
https://doi.org/10.1007/s40192-017-0088-1

Weitere Artikel der Ausgabe 1/2017

Integrating Materials and Manufacturing Innovation 1/2017 Zur Ausgabe

Thematic Section: 2nd International Workshop on Software Solutions for ICME

Scenario for Data Exchange at the Microstructure Scale

Thematic Section: 2nd International Workshop on Software Solutions for ICME

A Flexible and Efficient Output File Format for Grain-Scale Multiphysics Simulations

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.