Skip to main content
Log in

Influence of grain refinement on hot cracking in laser welding of aluminum

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Hot cracking is a major problem in casting and laser welding of important technical aluminum alloys. A well-known method to reduce this problem is grain refinement. The mechanism of hot cracking prevention by grain refinement is not fully understood yet. In this study, different amounts of titanium and boron were added into weld in laser welding of AA 6082, which lead to different grain structures. A hot cracking test (DELTA test) was carried out to investigate the influence of grain refinement on hot cracking susceptibility of the welds. In order to understand the mechanism of hot cracking prevention by grain refinement, an analytical model was developed, which describes the influences of the grain structure and solidifications parameter on the three following factors, the duration of the mush zone, the capillary pressure for hot cracking, as well as the permeability of the dendritic network in the molten pool. It reveals that the hot cracking susceptibility is determined by the combination effect of these three factors. There is an optimum grain size for a minimal hot cracking susceptibility. It agrees with the experimental results in DELTA test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Reisgen U, Olschok S, Wagner N, Zäh M, Oefele F, Ruhstorfer M (2010) Aktuelle Fügevefahren für Alumniumwerkstoffe. DVS Bericht Strahlschweißen von Aluminium 22–27

  2. Ostermann F (2007) Anwendungstechnologie Aluminium 2. Springer, Auflage

    Google Scholar 

  3. Dilthey U (2005) Schweißtechnische Fertigungsverfahren 2. Springer, Berlin, p 229

    Google Scholar 

  4. McCartney DG (1989) Grain refining of aluminium and its alloys using inoculants. Int Mater Rev 34:247–260

    Article  Google Scholar 

  5. Dvornak MJ, Frost RH, Olson DL (1990) In: Patterson RA, Mahin KW (eds) Proc. of the materials weldability symposium held in conjunction with materials week. ASM International, Detroit, pp 289–295

    Google Scholar 

  6. Prokhorov NN, Jakuschin BF, Prochorow NN (1968) Theorie und Verfahren zum Bestimmen der technologischen Festigkeit von Metallen während des Kristallisationsprozesses beim Schweißen. Schweißtechnik 18:8–11, vorher Prochorow als erster!

    Google Scholar 

  7. Rappaz M, Drezet JM, Gremaud M (1999) A new hot-tearing criterion. Metall Mater Trans A 30:449–455

    Article  Google Scholar 

  8. Cross E (2005) On the origin of weld solidification cracking. In: Böllinghaus T, Herold H (eds) Hot cracking phenomena in welds. Springer, Berlin, pp 3–18

    Chapter  Google Scholar 

  9. Eskin DG, Suyitno, Katgerman L (2004) Mechanical properties in the semi-solid state and hot tearing of aluminium alloys. Prog Mater Sci 49(5):629–711

    Article  Google Scholar 

  10. Katgerman L, Eskin DG (2008) In search of the prediction of hot cracking in aluminium alloys. In: Böllinghaus T (ed) Hot cracking phenomena in welds II. Springer, Berlin, pp 11–26

    Chapter  Google Scholar 

  11. Quaak CJ (1996) Rheology of partial solidified aluminium composites, Ph.D. Thesis, TU Delft

  12. Campbell J (1991) Castings. Butterworth-Heinemann, Oxford

    Google Scholar 

  13. Spittle JA, Cushway AA (1983) Influences of superheat on grain structure on hot-tearing susceptibilities of Al-Cu alloy castings. Met Technol 10:6–13

    Article  Google Scholar 

  14. Kou S (2003) Welding metallurgy. Wiley, New Jersey

    Google Scholar 

  15. Pellini WS (1952) Strain theory of hot tearing. Foundry 80:125–133

    Google Scholar 

  16. Schempp P, Cross CE, Schwenk C, Rethmeier M (2012) Influence of Ti and B additions on grain size and weldability of aluminium alloy 6082. Weld World 56(9–10):95–104

    Article  Google Scholar 

  17. Easton M, Grandfield J, StJohn D, Rinderer B (2006) The effect of grain refinement and cooling rate on the hot tearing of wrought aluminium alloys. Mater Sci Forum 519–521:1675–1680

    Article  Google Scholar 

  18. Reitemeyer D (2012) Stabilisierung der Fokuslage beim Schweißen mit Faser- und Scheibenlasern. In: Vollertsen F, Bergmann R (eds) Strahltechnik Band 49. BIAS, Bremen

    Google Scholar 

  19. Tang Z, Schempp P, Seefeld T, Schwenk C, Vollertsen F (2011) Kornfeinung beim WIG- und Laserstrahlschweißen von Aluminiumlegierungen. In: DVS-Deutscher Verband f. Schweissen u. verwandte Verfahren e. V (ed) Große Schweißtechnische Tagung 2011 (GST 2011), DVS-Berichte Band 275. Dvs Media, Düsseldorf, pp 153–160

    Google Scholar 

  20. Voort V, George F (2004) ASM Handbook, Volume 09—Metallography and Microstructures. ASM International

  21. Durdjevic MB, Duric B, Mitrasinovic A, Sokolowski JH (2003) Modelling of casting process parameters for the 3xx series of aluminum alloys using the silicon equivalency algorithm. Association of Metallurgical Engineers Serbia and Montenegro. 91–106

  22. Du Y, Chang YA, Huang BY, Gong WP et al (2003) Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation. Mater Sci Eng A 363:140–151

    Article  Google Scholar 

  23. Kurz W, Fischer DJ (1989) Fundamentals of solidification, 3rd edition. Trans Tech, Switzerland

    Google Scholar 

  24. Coniglio N (2008) Aluminium alloy weldability: identification of weld solidification cracking mechanisms through novel experimental technique and model development. Dissertation. BAM

  25. Chai G, Bäckerud L, Rolland T, Arnberg L (1995) Dendrite coherency during equiaxed solidification in binary aluminum alloys. Metall Mater Trans A 26(4):965–970

    Article  Google Scholar 

  26. Jácome P, Landim M C, Garcia A, Furtado A F, Ferreira I L (2011) The application of computational thermodynamics and a numerical model for the determination of surface tension and Gibbs–Thomson coefficient of aluminum based alloys, Thermochim. Acta 523:142–149

    Google Scholar 

  27. Grandfield JF, Davidson CJ, Taylor JA (2000) Application of a new hot tearing analysis to horizontal direct chill cast magnesium alloy AZ91. In: Ehrke K, Schneider W (eds) Continuous casting. Wiley, Weinheim, pp 205–210

    Google Scholar 

  28. Kutsuna M, Yan Q (1999) Study of porosity formation in laser welds of aluminium alloys (report 2): mechanism of porosity formation by hydrogen and magnetism. Weld Int 13:597–611

    Article  Google Scholar 

  29. Cross CE, Olson DL, Edwards GR (1994) The role of porosity in initiating weld metal hot cracks. In: Zacharia T (ed). Modelling and control of joining processes. Miami 549–557

  30. Kubo K, Pehlke R (1985) Mathematical modeling of porosity formation in solidification. Metall Trans B 16:359–366

    Article  Google Scholar 

Download references

Acknowledgements

This work was accomplished within the Center of Competence for Welding of Aluminum Alloys-Centr-Al. The authors appreciate the AIF (Allianz Industrie Forschung) of the German Federal Ministry of Economics and Technology for funding this work (Agreement No. 16.242N) and DVS for supporting the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Vollertsen.

Additional information

Doc. IIW-2436, recommended for publication by Commission IV “Power Beam Processes”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Z., Vollertsen, F. Influence of grain refinement on hot cracking in laser welding of aluminum. Weld World 58, 355–366 (2014). https://doi.org/10.1007/s40194-014-0121-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-014-0121-3

Keywords

Navigation