Skip to main content
Log in

Parametric study of FSSW of aluminium alloy 5754 using a pinless tool

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

A parametric study of friction stir spot welding (FSSW) of lap joints in aluminium alloy 5754 using a pinless tool with scrolled shoulder is presented. Experimental plan was done according to the response surface methodology (RSM), where tool rotation speed varied between 988 and 3511 rev/min, plunge rate between 24.4 and 150 mm/min and dwell time between 1 and 3.5 s. The plunge depth was held constant at 0.4 mm. During welding, the axial force and torque were monitored using a dynamometer. The welds were tensile shear tested, and the broken samples were visually examined. The weld bond line and microstructure were analysed using light optic microscope under polarised light, and SEM was used for examination of fractured surface. Mathematical models describing the relationship between welding parameters and joint strength, axial force and torque were developed. FSSW parameters, at which maximal joint strength was obtained, were considered as optimal. At these welding parameters, the axial force and torque were in the lower range among tested parameters. Material flow and joint formation are experimentally presented and schematically illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Simončič S, Podržaj P (2012) Image-based electrode tip displacement in resistance spot welding. Meas Sci Technol 23(6):1–7. doi:10.1088/0957-0233/23/6/065401

    Google Scholar 

  2. Bhadeshia HKDH, DebRoy T (2009) Critical assessment: friction stir welding of steels. Sci Technol Weld Join 14(3):193–196. doi:10.1179/136217109x421300

    Article  Google Scholar 

  3. Podržaj P, Polajnar I, Diaci J, Kariž Z (2008) Overview of resistance spot welding control. Sci Technol Weld Join 13(3):215–224. doi:10.1179/174329308x283893

    Article  Google Scholar 

  4. Podržaj P, Polajnar I, Diaci J, Kariž Z (2004) Expulsion detection system for resistance spot welding based on a neural network. Meas Sci Technol 15(3):592

    Article  Google Scholar 

  5. Podržaj P, Polajnar I, Diaci J, Kariž Z (2005) Estimating the strength of resistance spot welds based on sonic emission. Sci Technol Weld Join 10(4):399–405

    Article  Google Scholar 

  6. Podržaj P, Polajnar I, Diaci J, Kariž Z (2006) Influence of welding current shape on expulsion and weld strength of resistance spot welds. Sci Technol Weld Join 11(3):250–254

    Article  Google Scholar 

  7. Karpe B, Nagode A, Kosec B, Stoić A, Dolenc M, Bizjak M (2013) Microstructure evolution and thermal stability of rapidly solidified Al-Ni-Co-Re alloy. Metalurgija (Sisak) 52(3):305–308

    Google Scholar 

  8. DebRoy T, Bhadeshia HKDH (2010) Friction stir welding of dissimilar alloys—a perspective. Sci Technol Weld Join 15(4):266–270. doi:10.1179/174329310x12726496072400

    Article  Google Scholar 

  9. Robson PPJ Metallurgical challenges in joining lightweight dissimilar materials

  10. Feng Z, Santella ML, David SA, Steel RJ, Packer SM, Pan T, Kuo M, Bhatnagar RS (2005-01-1248) Friction stir spot welding of advanced high-strength steels—a feasibility study

  11. Nagode A, Klančnik G, Schwarczova H, Kosec B, Gojić M, Kosec L (2012) Analyses of defects on the surface of hot plates for an electric stove. Eng Fail Anal 23:82–89. doi:10.1016/j.engfailanal.2012.03.001

    Article  Google Scholar 

  12. Thornton P, Krause A, Davies R (1996) Aluminum spot weld. Weld J Incl Weld Res Suppl 75(3):101s

    Google Scholar 

  13. Wang P, Chisholm S, Banas G, Lawrence F Jr (1995) The role of failure mode, resistance spot weld and adhesive on the fatigue behavior of weld-bonded aluminum. Weld J Incl Weld Res Suppl 74(2):41s

    Google Scholar 

  14. Bakavos D, Prangnell PB (2009) Effect of reduced or zero pin length and anvil insulation on friction stir spot welding thin gauge 6111 automotive sheet. Sci Technol Weld Join 14(5):443–456. doi:10.1179/136217109x427494

    Article  Google Scholar 

  15. Pan T-Y Friction stir spot welding (FSSW)—a literature review. In: SAE International, 2007. doi:10.4271/2007-01-1702

  16. Bakavos D, Prangnell PB (2010) Mechanisms of joint and microstructure formation in high power ultrasonic spot welding 6111 aluminium automotive sheet. Mater Sci Eng A 527(23):6320–6334. doi:10.1016/j.msea.2010.06.038

    Article  Google Scholar 

  17. Balle F, Wagner G, Eifler D (2007) Ultrasonic spot welding of aluminum sheet/carbon fiber reinforced polymer—joints. Mater Werkst 38(11):934–938. doi:10.1002/mawe.200700212

    Article  Google Scholar 

  18. Jahn R, Cooper R, Wilkosz D (2007) The effect of anvil geometry and welding energy on microstructures in ultrasonic spot welds of AA6111-T4. Metall and Mater Trans A 38(3):570–583. doi:10.1007/s11661-006-9087-0

    Article  Google Scholar 

  19. Panteli A, Chen YC, Strong D, Zhang X, Prangnell PB (2012) Optimization of aluminium-to-magnesium ultrasonic spot welding. JOM 64(3):414–420. doi:10.1007/s11837-012-0268-6

    Article  Google Scholar 

  20. Patel VK, Bhole SD, Chen DL (2012) Improving weld strength of magnesium to aluminium dissimilar joints via tin interlayer during ultrasonic spot welding. Sci Technol Weld Join 17(5):342–347. doi:10.1179/1362171812y.0000000013

    Article  Google Scholar 

  21. Patel VK, Bhole SD, Chen DL (2013) Formation of zinc interlayer texture during dissimilar ultrasonic spot welding of magnesium and high strength low alloy steel. Mater Des 45:236–240. doi:10.1016/j.matdes.2012.09.018

    Article  Google Scholar 

  22. Patel VK, Bhole SD, Chen DL (2013) Ultrasonic spot welding of lightweight alloys. Paper presented at the 13th International Conference on Fracture, Beijing, China, June 16–21, 2013

  23. Firouzdor V, Kou S (2011) Al-to-Cu friction stir lap welding. Metall and Mater Trans A 43(1):303–315. doi:10.1007/s11661-011-0822-9

    Article  Google Scholar 

  24. Girard M, Huneau B, Genevois C, Sauvage X, Racineux G (2010) Friction stir diffusion bonding of dissimilar metals. Sci Technol Weld Join 15(8):661–665. doi:10.1179/136217110x12720264008475

    Article  Google Scholar 

  25. Lin Y-C, Liu J-J, Lin B-Y, Lin C-M, Tsai H-L (2012) Effects of process parameters on strength of Mg alloy AZ61 friction stir spot welds. Mater Des 35:350–357. doi:10.1016/j.matdes.2011.08.050

    Article  Google Scholar 

  26. Heideman R, Johnson C, Kou S (2010) Metallurgical analysis of Al/Cu friction stir spot welding. Sci Technol Weld Join 15(7):597–604. doi:10.1179/136217110x12785889549985

    Article  Google Scholar 

  27. Iwashita T (2003) Method and apparatus for joining. Google Patents

  28. Sakano R, Murakami K, Yamashita K, Hyoe T, Fuzimoto M, Inuzuka M, Nagao Y, Kashiki H (2001) Development of spot FSW robot system for automobile body members. In: Proceedings of the 3rd International Symposium of Friction Stir Welding, Kobe, Japan. TWI

  29. Pan T-Y (2007) Friction stir spot welding (FSSW)—a literature review

  30. Tran VX, Pan J (2010) Failure modes of friction stir spot welds in cross-tension specimens of dissimilar aluminium sheets. Sci Technol Weld Join 15(4):286–292. doi:10.1179/136217109x12568132624361

    Article  Google Scholar 

  31. Liyanage T, Kilbourne J, Gerlich AP, North TH (2009) Joint formation in dissimilar Al alloy/steel and Mg alloy/steel friction stir spot welds. Sci Technol Weld Join 14(6):500–508. doi:10.1179/136217109x456960

    Article  Google Scholar 

  32. Karpe B, Kosec B, Nagode A, Bizjak M (2013) The influence of Si and V on the kinetics of phase transformation and microstructure of rapidly solidified Al-Fe-Zr alloys. J Miner Metall Sect B, Metall 49 B(1):83–89

    Article  Google Scholar 

  33. Zhou L, Liu D, Nakata K, Tsumura T, Fujii H, Ikeuchi K, Michishita Y, Fujiya Y, Morimoto M (2012) New technique of self-refilling friction stir welding to repair keyhole. Sci Technol Weld Join 17(8):649–655. doi:10.1179/1362171812y.0000000058

    Article  Google Scholar 

  34. Rai R, De A, Bhadeshia HKDH, DebRoy T (2011) Review: friction stir welding tools. Sci Technol Weld Join 16(4):325–342. doi:10.1179/1362171811y.0000000023

    Article  Google Scholar 

  35. Zhang YN, Cao X, Larose S, Wanjara P (2012) Review of tools for friction stir welding and processing. Can Metall Q 51(3):250–261. doi:10.1179/1879139512y.0000000015

    Article  Google Scholar 

  36. Yuan W, Mishra RS, Webb S, Chen YL, Carlson B, Herling DR, Grant GJ (2011) Effect of tool design and process parameters on properties of Al alloy 6016 friction stir spot welds. J Mater Process Technol 211(6):972–977. doi:10.1016/j.jmatprotec.2010.12.014

    Article  Google Scholar 

  37. Badarinarayan H, Shi Y, Li X, Okamoto K (2009) Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminum 5754-O sheets. Int J Mach Tool Manuf 49(11):814–823. doi:10.1016/j.ijmachtools.2009.06.001

    Article  Google Scholar 

  38. Georgeou Z (2003) Analysis of material flow around a retractable pin in a friction stir weld. Master, Faculty of Engineering Port Elizabeth Technikon

  39. Klobčar D, Tušek J, Nagode A, Bušić M, Lešer V (2014) Comparison of joint strength produced by FSW, FSSW and a novel technique friction stir linear spot welding. Paper presented at the Zavarivanje: zbornik radova = Welding 2014: proceedings

  40. Badarinarayan H, Yang Q, Okamoto K (2011) Effect of weld orientation on static strength and failure mode of friction stir stitch welds in lap-shear specimens of aluminium 6022-T4 sheets. Fatigue Fract Eng Mater Struct 34(11):908–920. doi:10.1111/j.1460-2695.2011.01584.x

    Article  Google Scholar 

  41. Buffa G, Fratini L, Piacentini M (2008) On the influence of tool path in friction stir spot welding of aluminum alloys. J Mater Process Technol 208(1):309–317

    Article  Google Scholar 

  42. Pai-Chen Lin P-SL, Zheng-Ming Su, Jong-Ning Aoh (2014) Mechanical properties and failure modes of friction stir clinch joints between 6061-t6 aluminum and S45C steel sheets. Paper presented at the 10th International Symposium on Friction Stir Welding, Beijing, 20–22 May 2014

  43. Su Z-M, He R-Y, Lin P-C, Dong K (2014) Fatigue analyses for swept friction stir spot welds in lap-shear specimens of alclad 2024-T3 aluminum sheets. Int J Fatigue 61:129–140

    Article  Google Scholar 

  44. Sun YF, Fujii H, Takaki N, Okitsu Y (2011) Novel spot friction stir welding of 6061 and 5052 Al alloys. Sci Technol Weld Join 16(7):605–612. doi:10.1179/1362171811y.0000000043

    Article  Google Scholar 

  45. Bergant Z, Slabe JM, Ocaña JL, Grum J (2011) Laser cladding and heat treatment of Ni–Co–Mo maraging steel. J ASTM Int 8(5):12

    Google Scholar 

  46. Tran VX, Pan J, Pan T (2009) Effects of processing time on strengths and failure modes of dissimilar spot friction welds between aluminum 5754-O and 7075-T6 sheets. J Mater Process Technol 209(8):3724–3739. doi:10.1016/j.jmatprotec.2008.08.028

    Article  Google Scholar 

  47. Malafaia AMS, Milan MT, Oliveira MF, Spinelli D (2010) Fatigue behavior of friction stir spot welding and riveted joints in an Al alloy. Procedia Eng 2(1):1815–1821. doi:10.1016/j.proeng.2010.03.195

    Article  Google Scholar 

  48. Uematsu Y, Tokaji K, Tozaki Y, Nakashimac Y (2010) Fatigue behaviour of dissimilar friction stir spot weld between A6061 and SPCC welded by a scrolled groove shoulder tool. Procedia Eng 2(1):193–201. doi:10.1016/j.proeng.2010.03.021

    Article  Google Scholar 

  49. Hassanifard S, Mohammadpour M, Rashid HA (2014) A novel method for improving fatigue life of friction stir spot welded joints using localized plasticity. Mater Des 53:962–971. doi:10.1016/j.matdes.2013.07.098

    Article  Google Scholar 

  50. Su P, Gerlich A, North TH, Bendzsak GJ (2006) Material flow during friction stir spot welding. Sci Technol Weld Join 11(1):61–71. doi:10.1179/174329306x77056

    Article  Google Scholar 

  51. Tozaki Y, Uematsu Y, Tokaji K (2010) A newly developed tool without probe for friction stir spot welding and its performance. J Mater Process Technol 210(6–7):844–851. doi:10.1016/j.jmatprotec.2010.01.015

    Article  Google Scholar 

  52. Trdan U, Ocaña JL, Grum J (2011) Surface modification of aluminium alloys with laser shock processing. Strojniški vestnik–J Mech Eng 57(05):385–393. doi:10.5545/sv-jme.2010.119

    Article  Google Scholar 

  53. Trdan U, Skarba M, Grum J (2014) Laser shock peening effect on the dislocation transitions and grain refinement of Al–Mg–Si alloy. Mater Charact 97:57–68. doi:10.1016/j.matchar.2014.08.020

    Article  Google Scholar 

  54. Žagar S, Grum J (2011) Surface integrity after mechanical hardening of various aluminium alloys. Strojniški vestnik–J Mech Eng 57(04):334–344. doi:10.5545/sv-jme.2010.092

    Article  Google Scholar 

  55. Smolej A, Klobčar D, Skaza B, Nagode A, Slaček E, Dragojević V, Smolej S (2014) Superplasticity of the rolled and friction stir processed Al–4.5 Mg–0.35Sc–0.15Zr alloy. Mater Sci Eng A 590:239–245. doi:10.1016/j.msea.2013.10.027

    Article  Google Scholar 

  56. Smolej A, Skaza B, Markoli B, Klobčar D, Dragojević V, Slaček E (2012) Superplastic behaviour of AA5083 aluminium alloy with scandium and zirconium. Mater Sci Forum 706–709(706):395–401. doi:10.4028/www.scientific.net/MSF. 706-709.395

    Article  Google Scholar 

  57. Aluselect (2011) Properties of aluminium alloys. http://aluminium.matter.org.uk/aluselect/. Accessed 13 Mar 2013

  58. Brnic J, Canadija M, Turkalj G, Lanc D, Pepelnjak T, Barisic B, Vukelic G, Brcic M (2009) Tool material behavior at elevated temperatures. Mater Manuf Process 24(7–8):758–762. doi:10.1080/10426910902809800

    Article  Google Scholar 

  59. Ravne M (2012) Steel 1.2343

  60. Klobčar D, Tušek J, Skumavc A, Smolej A (2014) Parametric study of FSSW of aluminium alloy 5754. Metalurgija (Sisak) 53(1):21–24

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Vinko Rotar, Nejc Kvas, Miha Velkavrh, Nika Breskvar, Boris Bell and Tomaž Martinčič for the help at experimental work and data analysis at this research. The research was sponsored by the Slovenian Research Agency under the grant L2-4183.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Klobčar.

Additional information

Doc. IIW-2520, recommended for publication by Commission III “Resistance Welding, Solid State Welding and Allied Joining Processes.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klobčar, D., Tušek, J., Smolej, A. et al. Parametric study of FSSW of aluminium alloy 5754 using a pinless tool. Weld World 59, 269–281 (2015). https://doi.org/10.1007/s40194-014-0208-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-014-0208-x

Keywords

Navigation