Skip to main content
Log in

Role of microstructural constituents on surface crack formation during hot rolling of standard and low nickel austenitic stainless steels

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The effect of alloy segregation and delta (δ) ferrite contents on surface cracking of three standard (i.e. AISI 304L, AISI 310S and AISI 321) and two low nickel (i.e. LNi-1 and LNi-0.3) austenitic stainless steels (ASS) during hot rolling was investigated using optical microscopy (OM), automatic image analyzer, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and electron probe micro analyzer (EPMA). It was observed that the amount of δ-ferrite varied among different grades and also distributed heterogeneously across the width of the steel plates. In general, low nickel ASS showed higher amount of δ-ferrite compared to the standard ASS grades. The tendency to surface cracking during hot rolling gradually increased with increasing δ-ferrite content. Interestingly, carbon and nitrogen exerted maximum effect on δ-ferrite formation. The higher carbon and nitrogen content in the steel decreased δ-ferrite content. In addition, the segregation of Cu and Mn plays significant role in low nickel ASS and Ni-Cr in case of standard ASS has profound effect on surface cracking of the steel plates. A possible cause of surface crack formation/origination in steel plates during hot rolling was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Sellars and W.J. Tegart, Int. Metall. Rev. 17 (1972) 1.

    Article  CAS  Google Scholar 

  2. G.E. Dieter, American Society for Metals, Ohio, 1984, p.212.

    Google Scholar 

  3. B. G. Thomas, J.K. Brimacombe and I.V. Samarasekera, Iron Steel Soc. Trans. 7 (1986) 7.

    CAS  Google Scholar 

  4. Y. Maehara, K. Yasumoto, H. Tomono, T. Nagamichi and Y. Ohmori, Mater. Sci. Technol. 6 (1990) 793.

    Article  CAS  Google Scholar 

  5. B. Mintz, S. Yue and J.J. Jonas, Int. Mater. Rev. 36 (1991) 187.

    CAS  Google Scholar 

  6. P. Poelt, C. Sommitsch, S. Mitsche and M. Walter, Mater. Sci. Eng. A 420 (2006) 306.

    Article  Google Scholar 

  7. T. Sakai and J.J. Jonas, Acta Metall. 32 (1984) 189.

    Article  CAS  Google Scholar 

  8. F.J. Humphreys and M. Hantherly, Recrystallization and Related Annealing Phenomena, Pergamon, Oxford, 1996.

    Google Scholar 

  9. Y._C. Lin, L.T. Li and Y.C. Xia, Comput. Mater. Sci. 50 (2011) 2038.

    Article  CAS  Google Scholar 

  10. T. Sakai, J. Mater. Proc. Technol. 53 (1995) 349.

    Article  Google Scholar 

  11. T. Sakai and H. Miura, in: H.J. McQueen, et al. eds., Hot Workability of Steels and Light Alloys-Composites, TMS-CIM, Montreal, 1996, p. 161.

  12. T. Gladman, J. Iron Steel Inst. 209 (1971) 380.

    CAS  Google Scholar 

  13. S. Rudnik, IBID 204 (1966) 374.

    CAS  Google Scholar 

  14. K. Mayland, R.W. Welburnm and A. Nicholson, Met. Technol. 8 (1976) 350.

    Article  Google Scholar 

  15. F. Czerwinski, J.Y. Cho, A. Brodtka, A. Zielinska-Lipiec, J.H. Sunwoo, and J.A. Szpunar, J. Mater. Sci. 34 (1999) 4727.

    Article  CAS  Google Scholar 

  16. J.H. Decroix, The Iron and Steel Institute, London, 1968, p. 135.

    Google Scholar 

  17. M. L.G. Byrnes, M. Grujicic and W.S. Owen, Acta Metall. 35 (1987) 1853.

    Article  CAS  Google Scholar 

  18. M. O. Speidel and R.M. Pedrazzoli, Mater. Perform. 31 (1992) 59.

    CAS  Google Scholar 

  19. V. G. Gavriljuk, ISIJ Int. 36 (1996) 738.

    Article  CAS  Google Scholar 

  20. H. Q. Chen, J.S. Liu and H.G. Guo, Acta Metall. Sin. (Engl. Lett.) 17 (2004) 767.

    CAS  Google Scholar 

  21. G. Z. Cui, D.F. Gao and J.Z. Cai, J. Plast. Eng. 3 (1996) 3. (in Chinese).

    Google Scholar 

  22. F. Shi, L.J. Wang and W.F. Cui, Acta Metall. Sin. (Engl. Lett.) 20 (2007) 96.

    Article  Google Scholar 

  23. J. W. Simmons, Mater. Sci. Eng. A 207 (1996) 159.

    Article  Google Scholar 

  24. N. Cabanas, N. Akdut, J. Penning, and B.C. de Cooman, Metall. Mater. Trans. A 37 (2006) 3305.

    Article  Google Scholar 

  25. A. I.Z. Farahat, O. Hamed, A. El-Sisi and M. Hawash, Mater. Sci. Eng. A 530 (2011) 98.

    Article  CAS  Google Scholar 

  26. Z. Wang, W. Fu, S. Sun, Z. Lv and W. Zhang, J. Mater. Sci. Technol. 26 (2010) 798.

    Article  CAS  Google Scholar 

  27. F.B. Pickering, in Proc. 1st Int. Conf. on High Nitrogen Steels, Lille, France, 1988, p.10.

    Google Scholar 

  28. J. N. Tarboton, L.M. Matthews and A. Sutcliffe, Mater. Sci. Forum. 318 (1999) 777.

    Article  Google Scholar 

  29. R.K. Dubey, S.P. Chakraborty and S.K. Choudhurim, Concurrent Engineering Approach to Materials Processing, The Minerals Metals and Materials Society, Philadelphia, USA, 1992, p. 267.

    Google Scholar 

  30. F. Tehovnik, F. Vodopivec, L. Kosec, and M. Godec, Materiali in Tehnologije 40 (2006) 129.

    CAS  Google Scholar 

  31. Metals Handbook, 10th ed., Vol. 1, ASM International, Materials Park, OH, 1990, p. 892.

  32. R.H. Kane, The Hot Deformation of Austenite, Pergamon, 1977, p. 457.

    Google Scholar 

  33. F. Czewinski, A. Brodtka, J.Y. Cho, A. Zielinska-Lipiec, J.H. Sunwoo and J.A. Szpunar, Scr. Mater. 37 (1997) 1231.

    Article  Google Scholar 

  34. D. A. Melford, J. Iron Steel Inst. 204 (1966) 49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manidipto Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee, M., Pal, T.K. Role of microstructural constituents on surface crack formation during hot rolling of standard and low nickel austenitic stainless steels. ACTA METALL SIN 26, 206–216 (2013). https://doi.org/10.1007/s40195-012-0200-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-012-0200-7

Key Words

Navigation