Skip to main content
Log in

FEM Simulation of the Hydrogen Diffusion in X80 Pipeline Steel During Stacking for Slow Cooling

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The influence of temperature on the hydrogen diffusion behavior in X80 pipeline steel during stacking for slow cooling was studied using electrochemical penetration method, the temperature field and the hydrogen diffusion in this pipeline steel during stacking for slow cooling were simulated by ABAQUS finite element method (FEM) software. The results show that in this process there is a reciprocal relationship between the natural logarithm of hydrogen diffusion coefficient and temperature. The cooling rate decreases gradually with the increase of steel plate thickness. The hydrogen content is higher at high temperature (500–400 °C) than that in low temperature region (300–100 °C). The FEM simulation results are consistent with the experimental ones, and the model can be used to predict the hydrogen diffusion behavior in industrial production of X80 pipeline steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Kin, B.N. Popov, K.S. Chen, Corros. Sci. 45, 1005 (2003)

    Google Scholar 

  2. A. Caravella, N. Hara, H. Negishi, S. Hara, Hydrog. Energy 39, 4676 (2014)

    Article  Google Scholar 

  3. I. Moro, L. Briottet, P. Lemoine, E. Andrieu, C. Blanc, Mater. Sci. Eng. A 527, 7252 (2010)

    Article  Google Scholar 

  4. C.Y. Yan, C.Y. Liu, B. Yan, Comput. Mater. Sci. 83, 158 (2014)

    Article  Google Scholar 

  5. T. Zhang, Y. Yao, W.Y. Chu, L.J. Qiao, Acta Metall. Sin. 38, 844 (2002). (in Chinese)

  6. M. Mukherjee, T.K. Pal, Acta Metall. Sin. (Engl. Lett.) 26, 206 (2013)

    Article  Google Scholar 

  7. F.L. Sun, X.G. Li, F. Zhang, X.Q. Cheng, C. Zhou, N.C. Wu, Y.Q. Yin, J.B. Zhao, Acta Metall. Sin. (Engl. Lett.) 26, 257 (2013)

    Article  Google Scholar 

  8. C.L. Qiu, L.Y. Lan, D.W. Zhao, X.H. Gao, L.X. Du, Acta Metall. Sin. (Engl. Lett.) 26, 49 (2013)

    Article  Google Scholar 

  9. Z.T. Liu, C.W. Du, X. Zhang, F.M. Wang, X.G. Li, Acta Metall. Sin. (Engl. Lett.) 26, 489 (2013)

    Article  Google Scholar 

  10. Y.X. Wu, D. Tang, H.T. Jiang, Z.L. Mi, H.T. Jing, Acta Metall. Sin. (Engl. Lett.) 26, 713 (2013)

    Article  Google Scholar 

  11. H.Y. Song, S.H. Zhang, L.Y. Lan, C.M. Li, H.T. Liu, D.W. Zhao, G.D. Wang, Acta Metall. Sin. (Engl. Lett.) 26, 390 (2013)

    Article  Google Scholar 

  12. M.A.V. Devanathan, Z. Stachushi, Proc. R. Soc. 270, 90 (1962)

    Article  Google Scholar 

  13. H.B. Xue, Y.F. Cheng, Corros. Sci. 53, 1201 (2011)

    Article  Google Scholar 

  14. Y.X. Chen, Q.G. Chang, Acta Metall. Sin. 47, 548 (2011). (in Chinese)

  15. D. Oaoh, G. Owolabi, A. Odeshi, H. Whitworth, Acta Metall. Sin. (Engl. Lett.) 26, 378 (2013)

    Article  Google Scholar 

  16. R.A. Oriani, Acta Metall. 18, 147 (1970)

    Article  Google Scholar 

  17. Y.D. Han, Mater. Chem. Phys. 132, 216 (2012)

    Article  Google Scholar 

  18. S. Liu, H. Zheng, Q.H. Gui, A.H. Ma, H.B. Yu, L.B. Wang, H.G. Yang, Acta Metall. Sin. 40, 393 (2004). (in Chinese)

  19. K. Masui, H. Yoshida, R. Watanabe, Trans. ISIJ 19, 547 (1979)

    Google Scholar 

  20. T. Tanabe, Y. Yamanishi, S. Imoto, Mater. Trans. JIM 25, 1 (1984)

    Google Scholar 

  21. J. Xu, X.K. Sun, W.X. Chen, Y.Y. Li, Acta Metall. Sin. 28, 399 (1992). (in Chinese)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyi Huang.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Shi, Q., Chen, F. et al. FEM Simulation of the Hydrogen Diffusion in X80 Pipeline Steel During Stacking for Slow Cooling. Acta Metall. Sin. (Engl. Lett.) 27, 416–421 (2014). https://doi.org/10.1007/s40195-014-0073-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-014-0073-z

Keywords

Navigation