Skip to main content
Log in

Correlation Between Microstructure and Corrosion Behavior of Two 90Cu10Ni Alloy Tubes

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Two kinds of 90Cu10Ni tubes with different service lives (more than 3 years and only 1 year, respectively) under identical working conditions were studied by an immersion test in a 3.5 wt% NaCl solution and the electron backscattered diffraction (EBSD) technique. The morphology after immersion showed severer corrosion attack at the grain boundaries of the tube with shorter service life compared with the tube with longer service life. The grain boundary characterization distributions (GBCDs) of the two tubes obtained by EBSD revealed more Σ3 boundaries and twins, and larger random boundary meshes in the tube with longer service life. A short immersion test in a modified Livingston’s solution was conducted to evaluate the tendency to corrosion attack of different types of the grain boundaries. SEM and AFM were used to characterize the corrosion morphologies of the boundaries. A strong correlation between varying depths of corrosion grooves and types of the grain boundaries was obtained. The influence of deviation angle of low Σ boundaries on corrosion resistance of the grain boundaries was also discussed. It is concluded that a special “grain boundary engineering” (GBE) treatment has been performed on the tube with longer service life. It is proposed that the optimized GBCD is responsible for the better service performance of the tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Mathiyarasu, N. Palaniswamy, V.S. Muralidharan, Proc. India Acad. Sci. (Chem. Sci.). 113, 63 (2001)

  2. S.J. Yuan, S.O. Pehkonen, Corros. Sci. 49, 1276 (2007)

    Article  Google Scholar 

  3. J. Mathiyarasu, N. Palaniswamy, V.S. Muralidharan, Proc. India Acad. Sci. (Chem. Sci.). 111, 377 (1999)

  4. R.F. North, M.J. Pryor, Corros. Sci. 10, 297 (1970)

    Article  Google Scholar 

  5. R.G. Blundy, M.J. Pryor, Corros. Sci. 12, 65 (1972)

    Article  Google Scholar 

  6. Y.Z. Wang, A.M. Beccaria, G. Poggi, Corros. Sci. 36, 1277 (1994)

    Article  Google Scholar 

  7. P. Druska, H.H. Strehblow, Corros. Sci. 38, 1369 (1996)

    Article  Google Scholar 

  8. W. Schleich, NACE Corros. 05222, 1 (2005)

    Google Scholar 

  9. K.D. Efird, Corrosion 33, 3 (1977)

    Article  Google Scholar 

  10. R.J.K. Wood, S.P. Hutton, D.J. Schiffrin, Corros. Sci. 30, 1177 (1990)

    Article  Google Scholar 

  11. L.Y. Lin, X.H. Wang, Y.H. Zhao, Trans. Nonferrous Met. Soc. China 11, 563 (2001)

    Google Scholar 

  12. X.L. Zhu, T.Q. Lei, Corros. Sci. 44, 67 (2002)

    Article  Google Scholar 

  13. D.G. Brandon, Acta Metall. 14, 1479 (1966)

    Article  Google Scholar 

  14. H. Miyamoto, K. Yoshimura, T. Mimaki, M. Yamashita, Corros. Sci. 44, 1835 (2002)

    Article  Google Scholar 

  15. H. Miyamoto, K. Ikeuchi, T. Mimaki, Scr. Mater. 50, 1417 (2004)

    Article  Google Scholar 

  16. S. Xia, B.X. Zhou, W.J. Chen, X. Luo, H. Li, Mater. Sci. Forum 638–642, 2870 (2010)

    Article  Google Scholar 

  17. V. Randle, Mater. Sci. Technol. 26, 774 (2010)

    Article  Google Scholar 

  18. G. Yamada, H. Kokawa, Y. Yasuda, S. Tokita, T. Yokoyama, Y.S. Sato, H.T. Fujii, S. Tsurekawa, Philos. Mag. 93, 1443 (2013)

    Article  Google Scholar 

  19. C. Cayron, Acta Mater. 59, 252 (2011)

    Article  Google Scholar 

  20. P. Davies, V. Randle, Mater. Sci. Technol. 17, 615 (2001)

    Google Scholar 

  21. V. Randle, J. Microsc. 222, 69 (2006)

    Article  Google Scholar 

  22. V. Randle, M. Coleman, Acta Mater. 57, 3410 (2009)

    Article  Google Scholar 

  23. C.L. Hu, S. Xia, H. Li, Corros. Sci. 53, 1880 (2011)

    Article  Google Scholar 

  24. S. Xia, H. Li, T.G. Liu, B.X. Zhou, J. Nucl. Mater. 416, 303 (2011)

    Article  Google Scholar 

  25. V. Randle, Y. Hu, J. Mater. Sci. 40, 3243 (2005)

    Article  Google Scholar 

  26. V. Randle, M. Coleman, M. Waterton, Metall. Mater. Trans. A 42, 582 (2011)

    Article  Google Scholar 

  27. M. Coleman, V. Randle, Metall. Mater. Trans. A 39, 2175 (2008)

    Article  Google Scholar 

  28. V. Randle, J. Mater. Sci. 30, 3983 (1995)

    Article  Google Scholar 

  29. M.S. Parvizi, Int. Mater. Rev. 33, 169 (1988)

    Article  Google Scholar 

  30. H. Kokawa, J. Mater. Sci. 40, 927 (2005)

    Article  Google Scholar 

  31. Y. Zhou, K.T. Aust, U. Erb, G. Palumbo, Scr. Mater. 45, 49 (2001)

    Article  Google Scholar 

  32. S. Xia, J. Mater. Sci. 43, 2990 (2008)

    Article  Google Scholar 

  33. P. Lin, G. Palumbo, U. Erb, K.T. Aust, Scr. Metall. Mater. 39, 1387 (1995)

    Article  Google Scholar 

  34. E.M. Lehockey, G. Palumbo, P. Lin, A.M. Brennenstuhl, Scr. Mater. 36, 1211 (1997)

    Article  Google Scholar 

  35. E.M. Lehockey, D. Limoges, G. Palumbo, J. Power Sources 78, 79 (1999)

    Article  Google Scholar 

  36. S.H. Kim, U. Erb, K.T. Aust, G. Palumbo, Scr. Mater. 44, 835 (2001)

    Article  Google Scholar 

  37. G. Palumbo, K.T. Aust, E.M. Lehockey, U. Erb, P. Lin, Scr. Mater. 38, 1685 (1998)

    Article  Google Scholar 

  38. G. Palumbo, K.T. Aust, Acta Metall. Mater. 38, 2343 (1990)

    Article  Google Scholar 

  39. Y. Pan, B.L. Adams, T. Olson, N. Panayotou, Acta Mater. 44, 4685 (1996)

    Article  Google Scholar 

  40. V. Randle, Scr. Mater. 54, 1011 (2006)

    Article  Google Scholar 

  41. D. Wolf, Materials interfaces atomic level structure and properties (Chapman and Hall, London, 1992)

    Google Scholar 

  42. V.Y. Gertsman, S.M. Bruemmer, Acta Mater. 49, 1589 (2001)

    Article  Google Scholar 

  43. G. Palumbo, E.M. Lehockey, P. Lin, JOM 50, 40 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51131008) and the Shanghai Science and Technology Commission (No. 13520500500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yugui Zheng.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, A., Jiang, S., Zheng, Y. et al. Correlation Between Microstructure and Corrosion Behavior of Two 90Cu10Ni Alloy Tubes. Acta Metall. Sin. (Engl. Lett.) 27, 730–738 (2014). https://doi.org/10.1007/s40195-014-0111-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-014-0111-x

Keywords

Navigation