Skip to main content
Log in

Synthesis of ZrC Nanoparticles in the ZrO2–Mg–C–Fe System Through Mechanically Activated Self-Propagating High-Temperature Synthesis

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

ZrC nanoparticles in the matrix of Fe were produced by the mechanically activated self-propagating high-temperature method using ZrO2/C/Mg/Fe powder mixtures. The effects of milling time, Fe content, and combustion temperature as well as the formation route for synthesizing ZrC powder particles were studied. The samples were characterized by XRD, SEM, TEM, and DTA. The XRD results revealed that, after 18 h of mechanical activation, ZrO2/ZC/Mg/Fe reacted with the self-propagating combustion (SHS) mode at 870 °C producing the ZrC–Fe nanocomposite. It was also found that both mechanical activation and Fe content played key roles in the ZrC synthesis temperature. With a Fe content of (5–40) wt%, the SHS reaction proceeded favorably and both the ZrC formation temperature and the adiabatic temperature (T ad) decreased. The MgO content was removed from the final products using a leaching test process by dissolving in hydrochloric and acetic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Arya, E.A. Carter, J. Surf. Sci. 560, 103 (2004)

    Article  Google Scholar 

  2. X.M. Cui, Y.S. Nam, J.Y. Lee, W.H. Park, J. Mater. Lett. 62, 1961 (2008)

    Article  Google Scholar 

  3. B.P. Das, M. Panneerselvam, K.J. Rao, J. Solid State Chem. 173, 196 (2003)

    Article  Google Scholar 

  4. W.A. Mackie, P.R. Davis, IEEE Trans. Electron Devices 36, 220 (1989)

    Article  Google Scholar 

  5. S. Shinada, M. Nishisako, J. Am. Ceram. Soc. 78, 41 (1995)

    Article  Google Scholar 

  6. D. Karabi, T.K. Bandyopadhyay, J. Mater. Sci. Eng. A 379, 83 (2004)

    Article  Google Scholar 

  7. M.Q. Zhang, J.J. He, W.J. Liu, M.L. Zhong, J. Surf. Coat. Technol. 162, 140 (2003)

    Article  Google Scholar 

  8. B.S. Terry, O.S. Chinyamakobvu, J. Mater. Sci. Lett. 10, 628 (1991)

    Article  Google Scholar 

  9. T.Z. Kattamis, T. Suganuma, J. Mater. Sci. Eng. A 128, 1241 (1990)

    Article  Google Scholar 

  10. Z.Y. Fu, W.M. Wang, H. Wang, R.Z. Yuan, Z.A. Munir, Int. J. SHS 2, 175 (1993)

    Google Scholar 

  11. Y.J. Yan, J. Sol-Gel, Sci. Technol. 44, 97 (2007)

    Google Scholar 

  12. M.B. Dickerson, P.J. Wurm, J.R. Schorr, J. Mater. Sci. 39, 6005 (2004)

    Article  Google Scholar 

  13. M.S. El-Eskandarany, A.A. Mahday, H.A. Ahmed, A.A. Amer, J. Alloys Compd. 312, 315 (2000)

    Article  Google Scholar 

  14. A. Hajalilou, M. Hashim, M. Nahavandi, I. Ismail, Adv. Powder Technol. 25, 423 (2014)

    Article  Google Scholar 

  15. A. Hajalilou, M. Hashim, R. Ebrahimi-Kahizsangi, I. Ismail, N. Sarami, Adv. Powder Technol. 25, 1094 (2014)

    Article  Google Scholar 

  16. M.A. Korchagin, N.Z. Lyakhov, J. Phys. Chem. 2, 73 (2008)

    Google Scholar 

  17. J.S. Benjamin, T.E. Volin, J. Metall. Trans. B 5, 1929 (1974)

    Article  Google Scholar 

  18. G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953)

    Article  Google Scholar 

  19. S. Shukla, S. Seal, J. Phys. Chem. B 108, 3395 (2004)

    Article  Google Scholar 

  20. A.G. Merzhanov, J. Mater. Chem. 14, 1779 (2004)

    Article  Google Scholar 

  21. Y.J. Liang, Y.C. Che, Notebook of Thermodynamic Data of Inorganic (East–North University Press, Shengyang, 1996), p. 83

    Google Scholar 

  22. R.S. Wagner, W.C. Ellis, K.A. Jackson, S.M. Arnold, J. Appl. Phys. Lett. 35, 2993 (1964)

    Google Scholar 

  23. A.M. Nartowski, I.P. Parkin, M. Mackenzie, A.J. Craven, I. Macleod, J. Mater. Chem. 9, 1275 (1999)

    Article  Google Scholar 

  24. A.P. Hardt, P.V. Phung, J. Combust, Flame 21, 77 (1973)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Hajalilou.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajalilou, A., Hashim, M., kamari, H.M. et al. Synthesis of ZrC Nanoparticles in the ZrO2–Mg–C–Fe System Through Mechanically Activated Self-Propagating High-Temperature Synthesis. Acta Metall. Sin. (Engl. Lett.) 27, 1144–1151 (2014). https://doi.org/10.1007/s40195-014-0152-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-014-0152-1

Keywords

Navigation