Skip to main content
Log in

A Comparative Investigation on the Structural, Optical and Electrical Properties of SiO2–Fe3O4 Core–Shell Nanostructures with Their Single Components

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The SiO2–Fe3O4 core–shell nanostructures were synthesized by sol–gel chemistry. The morphological features of the nanostructures were examined by field emission scanning electron microscopy which revealed the core–shell nature of the nanoparticles. X-ray diffraction studies evidenced the formation of SiO2–Fe3O4 core–shell nanostructures with high degree of homogeneity. The elemental composition of the SiO2–Fe3O4 core–shell nanostructures was determined by energy-dispersive X-ray spectroscopy analysis. Fourier transform infrared spectroscopy showed the Si–O–Fe stretching vibrations. On analysis of the optical properties with UV–Vis spectra and Tauc’s plot, it was found that the band gap of SiO2–Fe3O4 core–shell nanostructures diminished to 1.5 eV. Investigation of the electrical properties of the core–shell nanostructures using field-dependent conductivity measurements presented a significant increase in photoconductivity as compared to those of its single components, thereby rendering them as promising candidates for application as photoelectrodes in dye-sensitized solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Q.F. Zhang, G.Z. Cao, Nano Today 6, 91 (2011)

    Article  Google Scholar 

  2. A. Rajesh, M. Manivel Raja, K. Gurunathan, Acta Metall. Sin. (Engl. Lett.) 27, 253 (2014)

    Article  Google Scholar 

  3. K. Suchita, S.W. Gosavi, J. Urban, S.K. Kulkarni, Curr. Sci. 91, 1038 (2006)

    Google Scholar 

  4. A. Emamdoust, S.F. Shayesteh, M. Marandi, Pramana J. Phys. 80, 713 (2012)

    Article  Google Scholar 

  5. B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, M.G. Bawendi, J. Phys. Chem. B 101, 9463 (1997)

    Article  Google Scholar 

  6. M. Ethayaraja, C. Ravikumar, D. Muthukumaran, K. Dutta, R. Bandyopadhyaya, J. Phys. Chem. C 111, 3246 (2007)

    Article  Google Scholar 

  7. K. Cendrowski, X. Chen, B. Zielinska, R.J. Kalenczuk, M.H. Rummeli, B. Buchner, R. Klingeler, E. Borowiak-Palen, J. Nanopart. Res. 13, 5899 (2011)

    Article  Google Scholar 

  8. B.J. Li, H.Q. Cao, J. Shao, M.Z. Qu, J.H. Warner, J. Mater. Chem. 21, 5069 (2011)

    Article  Google Scholar 

  9. T. Dung, T. Danh, L. Hoa, D.M. Chien, N.H. Duc, J. Exp. Nanosci. 4, 259 (2009)

    Article  Google Scholar 

  10. P. Liu, W. Zhong, H. Shi, D. Xue, J. Exp. Nanosci. 4, 323 (2009)

    Article  Google Scholar 

  11. M.E. Khosroshahi, L. Ghazanfari, M. Tahriri, J. Exp. Nanosci. 6, 580 (2011)

    Article  Google Scholar 

  12. J.M. Kima, S.M. Changa, S. Kimb, K.S. Kimc, J. Kimb, W.S. Kimb, Ceram. Int. 35, 1243 (2009)

    Article  Google Scholar 

  13. S. Son, S.H. Hwang, C. Kim, J.Y. Yun, J. Jang, A.C.S. Appl, Mater. Interfaces 5, 4815 (2013)

    Article  Google Scholar 

  14. Y.J. Yao, S.D. Miao, S.M. Yu, L.P. Ma, H.Q. Sun, S.B. Wang, J. Colloid Interface Sci. 379, 20 (2012)

    Article  Google Scholar 

  15. E.S. Jang, J. Korean Chem. Soc. 56, 478 (2012)

    Article  Google Scholar 

  16. X.H. Liu, H.Y. Wu, F.L. Ren, G.Z. Qiu, M.T. Tang, Mater. Chem. Phys. 109, 5 (2008)

    Article  Google Scholar 

  17. H. Zeng, J. Li, Z.L. Wang, J.P. Liu, S.H. Sun, Nano Lett. 4, 187 (2004)

    Article  Google Scholar 

  18. Y. Tian, D. Wu, X. Jia, B.B. Yu, S.H. Zhan, J. Nanomater. 2011, 5 (2011)

    Google Scholar 

  19. S. Kim, B. Fisher, H.J. Eisler, M. Bawendi, J. Am. Chem. Soc. 125, 11466 (2003)

    Article  Google Scholar 

  20. P. Mallick, S. Sahu, Nanosci. Nanotechnol. 2, 71 (2012)

    Article  Google Scholar 

  21. Y. Dimitriev, Y. Ivanova, R. Iordanova, J. Univ. Chem. Technol. Metall. 43, 181 (2008)

    Google Scholar 

  22. R.G. Chaudhuri, S. Paria, Chem. Rev. 112, 2373 (2012)

    Article  Google Scholar 

  23. S. Azimi, ISRN Nanotechnol. 2013, 815071 (2013). doi:10.1155/2013/815071

    Article  Google Scholar 

  24. J. Aguado, R. van Grieken, M.J. López-Muñoz, J. Marugán, Appl. Catal. A 312, 202 (2006)

    Article  Google Scholar 

  25. K.D. Arun, S.J. Merline, P.X. Francis, Appl. Nanosci. 2, 429 (2012)

    Article  Google Scholar 

  26. Z. Libor, Q. Zhang, C. Israel, N.D. Mathur, Mater. Sci. Technol. 25, 1307 (2009)

    Article  Google Scholar 

  27. D. Ponniah, F. Xavier, Phys. B 392, 20 (2007)

    Article  Google Scholar 

  28. D.S. Yun, H.J. Kim, J.W. Yoo, Bull. Korean Chem. Soc. 26, 1927 (2005)

    Article  Google Scholar 

  29. K.K. Siong, N.F. Amari, T.C. Yuan, S. Radiman, R. Yahaya, M.S. Yasir, Sains Malays. 42, 167 (2013)

    Google Scholar 

  30. L. Sophie, F. Delphine, P. Marc, R. Alain, R. Caroline, V.E. Luce, N.M. Robert, Chem. Rev. 108, 2064 (2008)

    Article  Google Scholar 

  31. K.F. Yu, Y.P. Guo, X.F. Ding, J.Z. Zhao, Z.C. Wang, J. Mater. Lett. 59, 4013 (2005)

    Article  Google Scholar 

  32. M.J. Chithra, M. Sathya, K. Pushpanathan, Acta Metall. Sin. (Engl. Lett.) 28, 394 (2015)

    Article  Google Scholar 

  33. K.D. Arun, X.J. Alex, S.J. Merline, P.X. Francis, J. Mater. Sci. 48, 3700 (2013)

    Article  Google Scholar 

  34. X.P. Zhang, W.Q. Jiang, X.L. Gong, Z. Zhang, J. Alloys Compd. 508, 400 (2010)

    Article  Google Scholar 

  35. V. Subramanian, D.W. Jeong, W.B. Han, W.J. Janq, J.O. Shim, J.W. Bae, H.S. Roh, New J. Chem. 38, 4872 (2014)

    Article  Google Scholar 

  36. O. ur Rahman, S.C. Mohapatra, S. Ahmad, Mater. Chem. Phys. 132, 196 (2012)

    Article  Google Scholar 

  37. F. Gu, S.F. Wang, M.K. Lu, G.J. Zhou, D. Xu, D.R. Yuan, J. Phys. Chem. B 108, 8119 (2004)

    Article  Google Scholar 

  38. F. Márquez, T. Campo, M. Cotto, R. Polanco, R. Roque, P. Fierro, J.M. Sanz, E. Elizalde, C. Morant, Soft Nanosci. Lett. 1, 25 (2011)

    Article  Google Scholar 

  39. D.W. Wang, X.M. Zhu, S.F. Lee, H.M. Chan, H.W. Li, S.K. Kong, J.C. Yu, C.H.K. Cheng, K.C.F. Leung, J. Mater. Chem. B 1, 2934 (2013)

    Article  Google Scholar 

  40. L.Y. Wang, J. Luo, Q. Fan, M. Suzuki, I.S. Suzuki, M.H. Engelhard, Y.H. Lin, N. Kim, J.Q. Wang, C.J. Zhong, J. Phys. Chem. B 109, 21593 (2005)

    Article  Google Scholar 

  41. A.M. Awwad, N.M. Salem, Nanosci. Nanotechnol. 2, 208 (2012)

    Article  Google Scholar 

  42. S.C.B. Myneni, S.J. Traina, G.A. Waychunas, T.J. Logan, Geochim. Cosmochim. Acta 62, 3499 (1998)

    Article  Google Scholar 

  43. S. Vaidya, P. Thaplyal, A.K. Ganguli, Nanoscale Res. Lett. 6, 169 (2011)

    Article  Google Scholar 

  44. N.R. Panda, D. Sahu, B.S. Acharya, P. Nayak, S.P. Pati, D. Das, Acta Metall. Sin. (Engl. Lett.) 27, 563 (2014)

    Article  Google Scholar 

  45. J.S. Bhaskar, G. Parthasarathy, N.C. Sarmah, Bull. Mater. Sci. 31, 775 (2008)

    Article  Google Scholar 

  46. M. Nikolić, K.P. Giannakopoulos, V.V. Srdić, Process. Appl. Ceram. 4, 81 (2010)

    Article  Google Scholar 

  47. G.M. Jorge, V.A. Guadaluper, W.G. Raúl, L.P.M. José, M. Vivianne, J. Nanosci. Nanotechnol. 8, 1 (2008)

    Article  Google Scholar 

  48. M.I. Amal, K.H. Kim, Chalcogenide Lett. 9, 345 (2012)

    Google Scholar 

  49. H.S. Al-Salman, M.J. Abdullah, Acta Metall. Sin. (Engl. Lett.) 28, 230 (2015)

    Article  Google Scholar 

  50. A.A. Yelil, M. Hema, P. Tamilselvi, R. Anbarasan, Indian J. Sci. 1, 6 (2012)

    Google Scholar 

  51. H.E.I. Ghandoor, H.M. Zidan, M.H.K. Mostafa, M.I.M. Ismail, Int. J. Electrochem. Sci. 7, 5734 (2012)

    Google Scholar 

  52. K.F. Lin, H.M. Cheng, H.C. Hsu, L.J. Lin, W.F. Hsieh, Chem. Phys. Lett. 409, 208 (2005)

    Article  Google Scholar 

  53. Milan P. Nikolic, Konstantinos P. Giannakopoulos, Dimosthenis Stamopoulos, Evagelia G. Moshopoulou, Vladimir V. Srdic, Mater. Res. Bull. 47, 1513 (2012)

    Article  Google Scholar 

  54. M. Israelowitz, Thesis, Syracuse University, 2013

  55. F.P. Xavier, G.J. Goldsmith, Bull. Mater. Sci. 18, 283 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the facility provided by the National Centre for Nanoscience and Nanotechnology, University of Madras. The authors also acknowledge the academic and technical support extended by Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Merline Shyla.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachan, N., Asha, A., Jothi Jeyarani, W. et al. A Comparative Investigation on the Structural, Optical and Electrical Properties of SiO2–Fe3O4 Core–Shell Nanostructures with Their Single Components. Acta Metall. Sin. (Engl. Lett.) 28, 1317–1325 (2015). https://doi.org/10.1007/s40195-015-0328-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-015-0328-3

Keywords

Navigation