Skip to main content
Log in

Characterization of the Hot Deformation Behavior of Cu–Cr–Zr Alloy by Processing Maps

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Hot deformation behavior of the Cu–Cr–Zr alloy was investigated using hot compressive tests in the temperature range of 650–850 °C and strain rate range of 0.001–10 s−1. The constitutive equation of the alloy based on the hyperbolic-sine equation was established to characterize the flow stress as a function of strain rate and deformation temperature. The critical conditions for the occurrence of dynamic recrystallization were determined based on the alloy strain hardening rate curves. Based on the dynamic material model, the processing maps at the strains of 0.3, 0.4 and 0.5 were obtained. When the true strain was 0.5, greater power dissipation efficiency was observed at 800–850 °C and under 0.001–0.1 s−1, with the peak efficiency of 47%. The evolution of DRX microstructure strongly depends on the deformation temperature and the strain rate. Based on the processing maps and microstructure evolution, the optimal hot working conditions for the Cu–Cr–Zr alloy are in the temperature range of 800–850 °C and the strain rate range of 0.001–0.1 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.H. Su, H.J. Li, Q.M. Dong, P. Liu, B.X. Kang, B.H. Tian, Acta Metall. Sin. (Engl. Lett.) 17, 741 (2004)

    Google Scholar 

  2. S.G. Mu, F.A. Guo, Y.Q. Tang, X.M. Cao, M.T. Tang, Mater. Sci. Eng. A 475, 235 (2008)

    Article  Google Scholar 

  3. D.D. Qu, Z.J. Zhou, Y.J. Yum, J. Aktaa, J. Nucl. Mater. 455, 130 (2014)

    Article  Google Scholar 

  4. Y. Pang, C.D. Xia, M.P. Wang, Z. Li, Z. Xiao, H.G. Wei, X.F. Sheng, Y.L. Jia, C. Chen, J. Alloys Compd. 582, 786 (2014)

    Article  Google Scholar 

  5. K.M. Liu, Z.Y. Jiang, J.W. Zhao, J. Zou, L. Lu, D.P. Lu, Metall. Mater. Trans. A 46, 2255 (2015)

    Article  Google Scholar 

  6. Y.A. Wang, J.X. Li, Y. Yan, L.J. Qiao, Tribol. Int. 50, 26 (2012)

    Article  Google Scholar 

  7. C.D. Xia, Y.L. Jia, W. Zhang, K. Zhang, Q.Y. Dong, G. Xu, M.P. Wang, Mater. Des. 39, 404 (2012)

    Article  Google Scholar 

  8. D.G. Cram, H.S. Zuro, Y.J.M. Brechet, C.R. Hutchinson, Acta Mater. 57, 5218 (2009)

    Article  Google Scholar 

  9. G. Wang, L. Xu, Y. Wang, Z. Zheng, Y.Y. Cui, R. Yang, J. Mater. Sci. Technol. 27, 893 (2011)

    Article  Google Scholar 

  10. Y. Zhang, A.A. Volinsky, H.T. Tran, Z. Chai, P. Liu, B.H. Tian, J. Mater. Eng. Perform. 24, 3783 (2015)

    Article  Google Scholar 

  11. G.L. Ji, Q. Li, K.Y. Ding, L. Yang, L. Li, J. Alloys Compd. 648, 397 (2015)

    Article  Google Scholar 

  12. Z.Y. Ding, S.G. Jia, P.F. Zhao, M. Deng, K.X. Song, Mater. Sci. Eng. A 570, 87 (2013)

    Article  Google Scholar 

  13. M.H. Wang, Y.F. Li, W.H. Wang, J. Zhou, A. Chiba, Mater. Des. 45, 384 (2013)

    Article  Google Scholar 

  14. D.J. Li, Y.R. Feng, S.Y. Song, Q. Liu, Q. Bai, F.Z. Ren, F.S. Shangguan, J. Alloys Compd. 618, 768 (2015)

    Article  Google Scholar 

  15. F.T. Kong, N. Cui, Y.Y. Chen, X.P. Wang, N.N. Xiong, Intermetallics 55, 66 (2014)

    Article  Google Scholar 

  16. G. Zhou, H. Ding, F.R. Cao, B.J. Zhang, J. Mater. Sci. Technol. 30, 217 (2014)

    Article  Google Scholar 

  17. A.D. Manshadi, M.R. Barnett, P.D. Hodgson, Metall. Mater. Trans. A 39, 1359 (2008)

    Article  Google Scholar 

  18. Z.Y. Zeng, L.Q. Chen, F.X. Zhu, X.H. Liu, J. Mater. Sci. Technol. 27, 913 (2011)

    Article  Google Scholar 

  19. N.P. Jin, H. Zhang, Y. Han, W.X. Wu, J.H. Chen, Mater. Charact. 60, 530 (2009)

    Article  Google Scholar 

  20. H.J. Mcqueen, S. Yue, N.D. Ryan, E. Fry, J. Mater. Process. Technol. 53, 293 (1995)

    Article  Google Scholar 

  21. Y.Q. Ning, X. Luo, H.Q. Liang, H.Z. Guo, J.L. Zhang, K. Tan, Mater. Sci. Eng. A 635, 77 (2015)

    Article  Google Scholar 

  22. A. Etaati, K. Dehghani, Mater. Chem. Phys. 140, 208 (2013)

    Article  Google Scholar 

  23. Y.V.R.K. Prasad, T. Seshacharyulu, Mater. Sci. Eng. A 243, 82 (1998)

    Article  Google Scholar 

  24. L. Wang, F. Liu, J.J. Cheng, Q. Zuo, C.F. Chen, J. Alloys Compd. 623, 69 (2015)

    Article  Google Scholar 

  25. T.D. Kil, J.M. Lee, Y.H. Moon, J. Mater. Process. Technol. 220, 224 (2015)

    Article  Google Scholar 

  26. Q.L. Pan, B. Li, Y. Wang, Y.W. Zhang, Z.M. Yin, Mater. Sci. Eng. A 585, 371 (2013)

    Article  Google Scholar 

  27. B.J. Lv, J. Peng, L.L. Zhua, Y.J. Wang, A.T. Tang, Mater. Sci. Eng. A 599, 150 (2014)

    Article  Google Scholar 

  28. W.Y. Liu, H. Zhao, D. Li, Z.Q. Zhang, G.J. Huang, Q. Liu, Mater. Sci. Eng. A 596, 176 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51101052) and the National Science Foundation (No. IRES 1358088).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Zhang or Alex A. Volinsky.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Sun, HL., Volinsky, A.A. et al. Characterization of the Hot Deformation Behavior of Cu–Cr–Zr Alloy by Processing Maps. Acta Metall. Sin. (Engl. Lett.) 29, 422–430 (2016). https://doi.org/10.1007/s40195-016-0404-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-016-0404-3

Keywords

Navigation