Skip to main content
Log in

Effect of Ultrasound on Heterogeneous Nucleation in TIG Welding of Al–Li Alloy

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The effect of ultrasound on heterogeneous nucleation in a tungsten inert gas (TIG) weld pool of 2195 Al–Li alloy has been investigated by a series of experiments. An ultrasonic vibration was imposed on the surface of base material before turning off the welding arc during the TIG welding implemented at a fixed point. The results suggest that ultrasound could promote heterogeneous nucleation in the TIG weld pool of 2195 Al–Li alloy. The grain around the fusion zone is changed from a column grain to an equiaxed grain after applying the ultrasonic treatment. To study the influencing mechanism of ultrasound on heterogeneous nucleation, further investigations were implemented where the welding arc was turned off after turning off the ultrasonic power. The results show that the equiaxed grain around the fusion zone disappeared gradually with an increase in heat input after turning off the ultrasonic power. It suggests that ultrasound could promote the heterogeneous nucleation particle to nucleate in advance before turning off the welding arc and the crystal nucleus could again be melted with an increase in heat input after turning off the ultrasonic power. Moreover, the effects of the welding current and ultrasonic amplitude on heterogeneous nucleation in the weld pool of 2195 Al–Li alloy were also investigated. Possible influencing mechanism of the welding current and ultrasonic amplitude on heterogeneous nucleation was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.E. Totten, D.S. MacKenzie, Handbook of Aluminum, vol. 1, Physical Metallurgy and Processes (Marcel Dekker Inc, New York, 2003)

    Book  Google Scholar 

  2. B.S. Murty, S.A. Kori, M. Chakraborty, Int. Mater. Rev. 47, 3 (2002)

    Article  Google Scholar 

  3. T.M. Wang, Z.N. Chen, H.W. Fu, L. Gao, T.J. Li, Mater. Sci. Eng., A 549, 136 (2012)

    Article  Google Scholar 

  4. O.V. Abramov, Ultrasound in Liquid and Solid Metals (CRC Press, Boca Raton, 1994)

    Google Scholar 

  5. A. Ramirez, M. Qian, B. Davis, T. Wilks, D.H. StJohn, Scr. Mater. 59, 19 (2008)

    Article  Google Scholar 

  6. X. Jin, B.Q. Fu, C.L. Zhang, W. Liu, Acta Metall. Sin. (Engl. Lett.) 28, 1149 (2015)

    Article  Google Scholar 

  7. L.B. He, P. Yang, L.M. Li, M.S. Wu, Ultrasonics 54, 2178 (2014)

    Article  Google Scholar 

  8. T. Watanabe, M. Shiroki, A. Yanagisawa, T. Sasaki, J. Mater. Process. Technol. 210, 1646 (2010)

    Article  Google Scholar 

  9. T. Yuan, S. Kou, Z. Luo, Acta Mater. 106, 144 (2016)

    Article  Google Scholar 

  10. M. Qian, A. Ramirez, A. Das, J. Cryst. Growth 311, 3708 (2009)

    Article  Google Scholar 

  11. H.R. Kotadia, A. Das, E. Doernberg, R. Schmid-Fetzer, Mater. Chem. Phys. 131, 241 (2011)

    Article  Google Scholar 

  12. B. Patel, P. Chaudhari, P. Bhingole, Mater. Lett. 66, 335 (2012)

    Article  Google Scholar 

  13. G. Wang, M.S. Dargusch, M. Qian, D.G. Eskin, D.H. Stjohn, J. Cryst. Growth 408, 119 (2014)

    Article  Google Scholar 

  14. M. Sha, S.S. Wu, L. Wan, Mater. Sci. Eng., A 554, 142 (2012)

    Article  Google Scholar 

  15. H. Puga, S. Costa, J. Barbos, S. Ribeiro, M. Prokic, J. Mater. Process. Technol. 211, 1729 (2011)

    Article  Google Scholar 

  16. V. Abramov, O. Abramov, V. Bulgakov, F. Sommer, Mater. Lett. 37, 27 (1998)

    Article  Google Scholar 

  17. T.V. Atamanenko, D.G. Eskin, L. Zhang, L. Katgerman, Metall. Mater. Trans. A 41, 2056 (2010)

    Article  Google Scholar 

  18. T.V. Atamanenko, D.G. Eskin, L. Katgerman, Mater. Sci. Forum 561–565, 987 (2007)

    Article  Google Scholar 

  19. H.J. Huang, Y.F. Xu, D. Shu, Y.F. Han, J. Wang, B.D. Sun, Trans. Nonferrous Metals Soc. China 24, 2414 (2014)

    Article  Google Scholar 

  20. B.L. Fu, G.L. Qin, X.M. Meng, Y. Ji, Y. Zou, Z. Lei, Mater. Sci. Eng., A 617, 1 (2014)

    Article  Google Scholar 

  21. J. Yan, M. Gao, G. Li, C. Zhang, X.Y. Zeng, M. Jiang, Int. J. Adv. Manuf. Technol. 66, 1467 (2013)

    Article  Google Scholar 

  22. R.G. Madhusudhan, A.G. Amol, J. Mater. Sci. 32, 4117 (1997)

    Article  Google Scholar 

  23. S.C. Chen, J.C. Huang, Mater. Sci. Technol. 15, 965 (1999)

    Article  Google Scholar 

  24. L.F. Mondolfo, Structure and Properties of Aluminum Alloys (Butterworths Press, London, 1976)

    Google Scholar 

  25. I. Tzanakis, G.S.B. Lebon, D.G. Eskin, K.A. Pericleous, J. Mater. Process. Technol. 229, 582 (2016)

    Article  Google Scholar 

  26. O. Louisnard, Ultrason. Sonochem. 19, 56 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the Key Program of the National Natural Science Foundation of China (Grant No. 51435004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Li Yang.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, QH., Lin, SB., Yang, CL. et al. Effect of Ultrasound on Heterogeneous Nucleation in TIG Welding of Al–Li Alloy. Acta Metall. Sin. (Engl. Lett.) 29, 1081–1088 (2016). https://doi.org/10.1007/s40195-016-0483-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-016-0483-1

Keywords

Navigation