Skip to main content
Log in

Microstructure and Thermal Conductivity of Al–Graphene Composites Fabricated by Powder Metallurgy and Hot Rolling Techniques

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The objective of this research is to improve the thermal conductivity and mechanical properties of Al/GNPs (graphene nanoplatelets) nanocomposites produced by classical powder metallurgy and hot rolling techniques. The microstructural evaluation confirmed the uniform dispersion of GNPs at low content and agglomeration at higher contents of GNPs. The structure of graphene was studied before and after the mixing and the Raman spectrum proofs that the wet mixing has a great potential to be used as a dispersion method. There was no significant peak corresponding to the Al4C3 formation in both the differential scanning calorimetry curves and X-ray diffraction patterns. The microstructural observation in both fabrication techniques showed grain refinement as a function of the GNPs content. Moreover, the introduction of the GNPs not only improved the Vickers hardness of the composites but also decreased their density. The thermal conductivity investigations showed that in both the press-sintered and hot-rolled samples, although the thermal conductivity of composites was improved at low GNPs contents, it was negatively affected at high GNPs contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. N. Chen, H. Zhang, M. Gu, Y. Jin, Mater. Process. Technol. 9, 1471 (2008)

    Google Scholar 

  2. A. Canakci, F. Arslan, T. Varol, Sci. Eng. Compos. Mater. 21, 505 (2014)

    Article  Google Scholar 

  3. T. Varol, A. Canakci, J. Alloys Compd. 649, 1066 (2015)

    Article  Google Scholar 

  4. M. Rashad, F. Pan, W. Guo, H. Lin, M. Asif, M. Irfan, Mater. Charact. 106, 382 (2015)

    Article  Google Scholar 

  5. A. Canakci, F. Arslan, T. Varol, Mater. Sci. Technol. 29, 954 (2013)

    Article  Google Scholar 

  6. T. Varol, A. Canakci, Arab. J. Sci. Eng. 40, 2711 (2015)

    Article  Google Scholar 

  7. M. Rashad, F. Pan, Z. Yu, M. Asif, Prog. Nat. Sci. Mater. Int. 25, 460 (2015)

    Article  Google Scholar 

  8. A. Saboori, C. Novara, M. Pavese, C. Badini, F. Giorgis, P. Fino, J. Mater. Eng. Perform. (2017). doi:10.1007/s11665-017-2522-0

    Google Scholar 

  9. J. Jiang, G. Chen, Y. Wang, J. Mater. Sci. Technol. 32, 1197 (2016)

    Article  Google Scholar 

  10. Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, J. Mater. Sci. Technol. 30, 649 (2014)

    Article  Google Scholar 

  11. Q. Li, Y. Zhang, H. Gong, H. Sun, W. Li, L. Ma, Y. Zhang, J. Mater. Sci. Technol. 32, 633 (2016)

    Article  Google Scholar 

  12. M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.Z. Yu, N. Koratkar, ACS Nano 3, 3884 (2009)

    Article  Google Scholar 

  13. M. Rashad, F. Pan, M. Asif, A. Tang, J. Ind. Eng. Chem. 20, 4250 (2014)

    Article  Google Scholar 

  14. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)

    Article  Google Scholar 

  15. S.F. Bartolucci, J. Paras, M.A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, N. Koratkar, Mater. Sci. Eng., A 528, 7933 (2011)

    Article  Google Scholar 

  16. R. Perez-Bustamante, D. Bolanos-Morales, J. Bonilla-Maetinez, I. Estrada-Guel, J. Alloy. Compd. 615, S578 (2014)

    Article  Google Scholar 

  17. M. Rashad, F. Pan, A. Tang, M. Asif, M. Aamir, J. Alloy. Compd. 603, 111 (2014)

    Article  Google Scholar 

  18. C.H. Jeon, Y.H. Jeong, J.J. Seo, H.N. Tien, S.T. Hong, Y.J. Yum, S.H. Hur, K.J. Lee, Int. J. Precis. Eng. Manuf. 15, 1235 (2014)

    Article  Google Scholar 

  19. B. Lee, M.Y. Koo, S.H. Jin, K.T. Kim, S.H. Hong, Carbon N. Y. 78, 212 (2014)

    Article  Google Scholar 

  20. L.A. Yolshina, R.V. Muradymov, I.V. Korsun, G.A. Yakovlev, S.V. Smirnov, J. Alloys Compd. 663, 449 (2016)

    Article  Google Scholar 

  21. C. Xue, H. Bai, P.F. Tao, J.W. Wang, N. Jiang, Mater. Des. 108, 250 (2016)

    Article  Google Scholar 

  22. S.R. Bakshi, A. Agarwal, Carbon N. Y. 49, 533 (2011)

    Article  Google Scholar 

  23. J.L. Li, Y.C. Xiong, X.D. Wang, S.J. Yan, C. Yang, W.W. He, J.Z. Chen, S.Q. Wang, X.Y. Zhang, X.L. Dai, Mater. Sci. Eng., A 626, 400 (2015)

    Article  Google Scholar 

  24. A.C. Ferrari, J. Robertson, Phys. Rev. B 64, 1 (2001)

    Article  Google Scholar 

  25. T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D.M. Basko, C. Galiotis, N. Marzari, K.S. Novoselov, A.K. Geim, A.C. Ferrari, Phys. Rev. B 79, 1 (2009)

    Article  Google Scholar 

  26. C.F. Deng, D.Z. Wang, X.X. Zhang, A.B. Li, Mater. Sci. Eng., A 444, 138 (2007)

    Article  Google Scholar 

  27. C.F. Deng, Y.X. Ma, P. Zhang, X.X. Zhang, D.Z. Wang, Mater. Lett. 62, 2301 (2008)

    Article  Google Scholar 

  28. C. Suryanarayana, E. Ivanov, V.V. Boldyrev, Mater. Sci. Eng., A 306, 151 (2001)

    Article  Google Scholar 

  29. T. Varol, A. Canakci, Microstructure. Met. Mater. Int. 21, 704 (2015)

    Article  Google Scholar 

  30. M. Zabihi, M.R. Toroghinejad, A. Shafyei, Mater. Sci. Eng., A 560, 567 (2013)

    Article  Google Scholar 

  31. B.N. Roohollah Jamaati, S. Amirkhanlou, M.R. Toroghinejad, J. Mater. Eng. Perform. 21, 1249 (2012)

    Article  Google Scholar 

  32. R. Jamaati, S. Amirkhanlou, M.R. Toroghinejad, B. Niroumand, Mater. Sci. Eng., A 528, 2143 (2011)

    Article  Google Scholar 

  33. K. Chu, C. Jia, Phys. Status Solidi A 211, 184 (2014)

    Article  Google Scholar 

  34. M. Rashad, F. Pan, Y. Liu, X. Chen, H. Lin, J. Magnes. Alloy. 4, 270 (2016)

    Article  Google Scholar 

  35. F. Chen, J. Ying, Y. Wang, S. Du, Z. Liu, Q. Huang, Carbon N. Y. 96, 836 (2016)

    Article  Google Scholar 

  36. R.C. Progelhof, J.L. Throne, R.R. Ruetsch, Polym. Eng. Sci. 16, 615 (1976)

    Article  Google Scholar 

  37. E.T. Swartz, R.O. Pohl, Rev. Mod. Phys. 61, 605 (1989)

    Article  Google Scholar 

  38. A.J. Schmidt, K.C. Collins, A.J. Minnich, G. Chen, J. Appl. Phys. 107, 104 (2010)

    Google Scholar 

  39. B. Dewar, M. Nicholas, P.M. Scott, J. Mater. Sci. 11, 1083 (1976)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Vedani and Dr. Casati from Politecnico di Milano for their assistance to perform the hot rolling process in their laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Saboori.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saboori, A., Pavese, M., Badini, C. et al. Microstructure and Thermal Conductivity of Al–Graphene Composites Fabricated by Powder Metallurgy and Hot Rolling Techniques. Acta Metall. Sin. (Engl. Lett.) 30, 675–687 (2017). https://doi.org/10.1007/s40195-017-0579-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0579-2

Keywords

Navigation