Skip to main content
Log in

Dynamic Recrystallization Behavior and Processing Map Development of 25CrMo4 Mirror Plate Steel During Hot Deformation

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The dynamic recrystallization behavior of 25CrMo4 steel was systematically investigated by compression deformation at different temperatures and strain rates on a Gleeble 1500 thermal mechanical simulation tester. The flow curves under different deformation conditions were obtained, and the effects of deformation temperature and strain rate on the appearance of the flow curves were discussed. Based on the experimental flow curves, the activation energy determined by regression analysis was Q = 337 kJ/mol, and the constitutive model was constructed. All the characteristic points of the flow curves were identified from the work hardening rate curves (\(\theta = {\text{d}}\sigma /{\text{d}}\varepsilon \;{\text{vs}} \;\sigma\)), which were derived from the flow curves. Then, the kinetics model of dynamic recrystallization was determined by combining the Avrami equation with the stress loss resulted from the dynamic recrystallization. With the aid of the kinetics model, the effect of strain on the efficiency of power dissipation was discussed. Furthermore, the optimum parameters for the forging process were determined based on the processing maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater. Sci. 60, 130 (2014)

    Article  Google Scholar 

  2. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett, Mater. Sci. Eng. A 238, 219 (1997)

    Article  Google Scholar 

  3. H.J. McQueen, Mater. Sci. Eng. A 387–389, 203 (2004)

    Article  Google Scholar 

  4. F. Chen, Z.S. Cui, S.J. Chen, Mater. Sci. Eng. A 528, 5073 (2011)

    Article  Google Scholar 

  5. X.M. Chen, Y.C. Lin, D.X. Wen, J.L. Zhang, M. He, Mater. Des. 57, 568 (2014)

    Article  Google Scholar 

  6. G. Gottstein, M. Frommert, M. Goerdeler, N. Schafer, Mater. Sci. Eng. A 387–389, 604 (2004)

    Article  Google Scholar 

  7. E.I. Poliak, J.J. Jonas, Acta Mater. 44, 127 (1996)

    Article  Google Scholar 

  8. A. Najafizadeh, J.J. Jonas, ISIJ Int. 46, 1679 (2006)

    Article  Google Scholar 

  9. A.I. Fernández, P. Uranga, B. López, J.M. Rodriguez-Ibabe, Mater. Sci. Eng. A 361–362, 367 (2003)

    Article  Google Scholar 

  10. Y.C. Lin, X.M. Chen, Mater. Des. 1733, 32 (2011)

    Google Scholar 

  11. Y. Wu, M. Zhang, X. Xie, J. Dong, F. Lin, S.Q. Zhao, J. Alloys Compd. 656, 119 (2015)

    Article  Google Scholar 

  12. F.S. Qu, Z.Y. Reng, R.R. Ma, Z.H. Wang, D.M. Chen, J. Alloys Compd. 663, 552 (2016)

    Article  Google Scholar 

  13. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.R. Barker, Metall. Mater. Trans. A 15, 1883 (1984)

    Article  Google Scholar 

  14. Y.V.R.K. Prasad, T. Seshacharyulu, Int. Mater. Rev. 43, 243 (1997)

    Article  Google Scholar 

  15. H. Ziegler, Progress in solid mechanics (Wiley, New York, 1983), p. 93

  16. A.K.S. Kalyan Kumar, Dissertation, Indian Institute of Science, 1987

  17. Y.V.R.K. Prasad, Indian J. Technol. 28, 435 (1990)

    Google Scholar 

  18. N. Khanafi-Benghalem, E. Felder, K. Loucif, P. Montmitonnet, Wear 268, 23 (2010)

    Article  Google Scholar 

  19. Y.M. Huo, B.Y. Wang, Q. Bai, J.G. Lin, Key Eng. Mater. 622–623, 679 (2014)

    Article  Google Scholar 

  20. J.P. Luo, Y.X. Zhong, Q.X. Ma, X. Gao, Forg. Stamp. Technol. 35, 117 (2010)

    Google Scholar 

  21. J.J. Jonas, X. Quelennec, L. Jiang, E. Martin, Acta Mater. 57, 2748 (2009)

    Article  Google Scholar 

  22. H. Miura, H. Aoyama, T. Sakai, J. Jpn. Inst. Met. 58, 267 (1994)

    Article  Google Scholar 

  23. H. Miura, T. Sakai, R. Mogawa, J.J. Jonas, Philos. Mag. 87, 4197 (2007)

    Article  Google Scholar 

  24. C. Zener, H. Hollomon, J. Appl. Phys. 15, 22 (1944)

    Article  Google Scholar 

  25. C.M. Sellars, Acta Metall. 14, 1136 (1966)

    Article  Google Scholar 

  26. J.L. Uvira, J.J. Jonas, Trans. Metall. Soc. AIME 1619, 242 (1968)

    Google Scholar 

  27. S. Naghdy, A. Akbarzadeh, Mater. Des. 53, 910 (2014)

    Article  Google Scholar 

  28. L. Chen, Y.J. Zhang, F. Li, X.G. Liu, B.F. Guo, M. Jin, Mater. Sci. Eng. A 663, 141 (2016)

    Article  Google Scholar 

  29. C. Zhang, L.W. Zhang, W.F. Shen, C.R. Liu, Y.N. Xia, R.Q. Li, Mater. Des. 804, 90 (2015)

    Google Scholar 

  30. Z.W. Cai, F.X. Chen, F.J. Ma, J.Q. Guo, J. Alloys Compd. 670, 55 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Basic Research Program of China (No. 2011CB012903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Xian Ma.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Ma, QX. Dynamic Recrystallization Behavior and Processing Map Development of 25CrMo4 Mirror Plate Steel During Hot Deformation. Acta Metall. Sin. (Engl. Lett.) 30, 907–920 (2017). https://doi.org/10.1007/s40195-017-0613-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0613-4

Keywords

Navigation