Skip to main content
Log in

Spectral studies on the conformational transitions of bovine insulin during denaturant-induced unfolding

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Transitions among various molecule states and conformational changes of bovine insulin were investigated under different denaturing conditions by means of fluorescence phase diagrams, fluorescence quenching, 1-anilinonaphthalene-8-sulfonate(ANS) binding assay and circular dichroism(CD) spectra. In both guanidine hydrochloride( GuHCl)- and urea-denatured procedures, the spatial structure of insulin molecules changed from ordered states to relative unordered ones with the increasing of denaturant concentration. The GuHCl-denatured process followed a four-state model, for there were two intermediates existed in 2.0 and 6.0 mol/L GuHCl, respectively. Intermediate I1 is more compact than the normal protein. And intermediate I2 has lost most of the secondary structures. When GuHCl concentration was above 6.0 mol/L, the fluorophores originally existed in the internal of insulin molecules would expose to the surface. However, the urea-denatured process followed a three-state model, only one intermediate existed in 2.5 mol/L urea. During the urea-denatured procedure, the fluorophores originally existed in the internal of insulin molecules didn’t expose to the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anfinsen C. B., Scheraga H. A., Adv. Protein Chem., 1975, 29, 205

    Article  CAS  Google Scholar 

  2. Dobson C. M., Methods, 2004, 34, 4

    Article  CAS  Google Scholar 

  3. Lindorff-Larsen K., Rogen P., Paci E., Vendruscolo M., Dobson C. M., Trends Biochem. Sci., 2005, 30, 13

    Article  CAS  Google Scholar 

  4. Kumar T. K., Yu C., Acc. Chem. Res., 2004, 37, 929

    Article  CAS  Google Scholar 

  5. Kuznetsova I. M., Turoverov K. K., Uversky V. N., J. Proteome Res., 2004, 3(3), 485

    Article  CAS  Google Scholar 

  6. Poklar N., Lah J., Salobir M., Macek P., Vesnaver G., Biochemistry, 1997, 26, 14345

    Article  Google Scholar 

  7. Pande M., Dubey V. K., Sahu V., Jagannadham M. V., J. Biotechnol., 2007, 131(4), 404

    Article  CAS  Google Scholar 

  8. Rochet J. C., Lansbury P. T., Curr. Opin. Struct. Biol., 2000, 10, 60

    Article  CAS  Google Scholar 

  9. Stefani M., Dobson C. M., J. Mol. Med., 2003, 81, 678

    Article  CAS  Google Scholar 

  10. Raussens V., Ruysschaert J. M., Goormaghtigh E., Anal. Biochem., 2003, 319, 114

    Article  CAS  Google Scholar 

  11. Xie M. X., Liu Y., Chem. J. Chinese Universities, 2003, 24(2), 226

    CAS  Google Scholar 

  12. Bian L. J., Zhang T., Yang X. Y., Liu L., Zheng X. H., Chin. J. Chem., 2011, 29(4), 813

    Article  CAS  Google Scholar 

  13. Yang J. T., Zhang T., Lu C. Z., Bian L. J., Chin. J. Chem., 2011, 29(9), 1939

    Article  CAS  Google Scholar 

  14. Sarmento B., Ferreira D. C., Jorgensen L., van de Weert M., Eur. J. Pharm. Biopharm., 2007, 65(1), 10

    Article  CAS  Google Scholar 

  15. Blundell T. L., Cutfield J. F., Cutfield S. M., Dodson E. J., Dodson G. G., Hodgkin D. C., Mercola D. A., Vijayan M., Nature, 1971, 231, 506

    Article  CAS  Google Scholar 

  16. Millican R. L., Brems D. N., Biochemistry, 1994, 33, 1116

    Article  CAS  Google Scholar 

  17. Elshemey W. M., Mohammad I. A., Elsayed A. A., Int. J. Biol. Macromol., 2010, 46, 471

    Article  CAS  Google Scholar 

  18. Olsen H. B., Ludvigsen S., Kaarsbolm N. C., J. Mol. Biol., 1998, 284(2), 477

    Article  CAS  Google Scholar 

  19. Zako T., Sakono M., Hashimoto N., Ihara M., Maeda M., Biophys. J., 2009, 96(8), 3331

    Article  CAS  Google Scholar 

  20. Ristow S. S., Wetlaufer D. B., Biochem. Biophys. Res. Commun., 1973, 50, 544

    Article  CAS  Google Scholar 

  21. Ramprakash J., Doseeva V., Galkin A., Krajewski W., Muthukumar L., Pullalarevu S., Demirkan E., Herzberg O., Moult J., Schwarz F. P., Anal. Biochem., 2008, 374, 221

    Article  CAS  Google Scholar 

  22. Zhang Y., Deng Y., Lu M., Craig D. Q. M, Li Z., J. Colloid. Interf. Sci., 2009, 337(2), 322

    Article  CAS  Google Scholar 

  23. Yao Q. Z., Hou L. X., Zhou H. M., Zou C. L., Sci. China Ser. B: Chem., 1982, 10, 892

    Google Scholar 

  24. Burstein E. A., Mol. Biol., 1971, 5, 214

    Google Scholar 

  25. Naseem F., Khan R. H., Int. J. Biol. Macromol., 2008, 42, 158

    Article  CAS  Google Scholar 

  26. Gasymov O. K., Abduragimov A. R., Glasgow B. J., Biochem. Biophys. Res. Commun., 2007, 357, 499

    Article  CAS  Google Scholar 

  27. Qu P., Lu H., Yan S., Zhou D., Lu Z., J. Mol. Struct., 2009, 936, 187

    Article  CAS  Google Scholar 

  28. Street T. O., Bolen D. W., Rose G. D., Proc. Natl. Acad. Sci. USA, 2006, 103, 13997

    Article  CAS  Google Scholar 

  29. Sultan N. A. M., Swamy M. J., J. Photochem. Photobiol. B, Biol., 2005, 80, 93

    Article  CAS  Google Scholar 

  30. Komath S. S., Swamy M. J., J. Photochem. Photobiol. B, Biol., 1999, 50, 108

    Article  CAS  Google Scholar 

  31. Zhan F., Liang H., Cheng H., Wang J., Zhao W. H., Chem. J. Chinese Universities, 2011, 32(6), 1277

    Google Scholar 

  32. Bian L. J., Zhang T., Yang X. Y., Liu L., Zheng X. H., Chin. J. Chem., 2011, 29(4), 813

    Article  CAS  Google Scholar 

  33. Lei H., Tang Q., Huang W., Chen S., Liu Y., Sun Y., Chin. J. Anal. Chem., 2012, 40(8), 1231

    CAS  Google Scholar 

  34. Hu C., Zou C., Sci. China Ser. B: Chem., 1992, 12, 1260

    Google Scholar 

  35. Parisi M., Mazzini A., Sorbi R. T., Ramoni R., Grolli S., Favilla R., Biochim. Biophys. Acta, 2003, 1652, 115

    Article  CAS  Google Scholar 

  36. Gull N., Sen P., Kabir-ud-Din, Khan R. H., J. Biochem., 2007, 141, 261

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liujiao Bian.

Additional information

Supported by the National Natural Science Foundation of China(No.21075097).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, X., Ma, X. & Bian, L. Spectral studies on the conformational transitions of bovine insulin during denaturant-induced unfolding. Chem. Res. Chin. Univ. 30, 222–227 (2014). https://doi.org/10.1007/s40242-014-3372-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-014-3372-z

Keywords

Navigation