Skip to main content
Log in

Novel one-component positive-tone chemically amplified i-line molecular glass photoresist based on tannic acid

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Molecular glass resist has been considered as one of the best choices for a new generation of lithography. In this work, a new type of photoactive compound was obtained by the esterification of tannic acid with 2-diazo-1-naphthoquinone-4-sulfonyl chloride(2,1,4-DNQ-Cl) and ditertbutyl dicarbonate. The new obtained compound possessed both a photosensitive group of diazonaphthoquinone sulfonate(2,1,4-DNQ) and a group of acidolytic protection. Upon the irradiation of the compound under 365 nm light, the former group was photolyzed and converted into indene carboxylic acid along with a small amount of sulfonic acid, which could lead to the deprotection of the latter group. As a result, a novel i-line molecular glass photoresist was formed with the chemical modification of tannic acid. The experimental results show that the modificated compound had a fair solubility in many organic solvents. The lithographic performance of the resist was evaluated on an i-line exposure system with high photosensitivity and resolution as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hanabata M., Advanced Materials for Optics and Electronics, 1994, 4(2), 75

    Article  CAS  Google Scholar 

  2. Abid M. I., Wang L., Zhang X., Xu Y., Chem. Res. Chinese Universities, 2013, 29(5), 1006

    Article  CAS  Google Scholar 

  3. Chen M., Li Y. C., Hong X. Y., Jiao X. M., Cheng A. P., Chem. J. Chinese Universities, 2000, 21(9), 1482

    Google Scholar 

  4. Hanabata M., Adv. Mater. Opt. Electr., 1994, 4(2), 75

    Article  CAS  Google Scholar 

  5. Hanabata M., Oi F., Furuta A., Polym. Eng. Sci., 1993, 32, 1494

    Article  Google Scholar 

  6. Wanat S. F., Plass R. R., Rahman M. D., J. Micro/Nanolithogr, MEMS, and MOEMS, 2008, 7(3), 033008/1

    Article  CAS  Google Scholar 

  7. Khanna D. N., Durham D. L., Seyedi F., Lu P. H., Perera T., Polym. Eng. Sci., 1992, 32, 1500

    Article  CAS  Google Scholar 

  8. Hanabata M., Oi F., Furuta A., Polym. Eng. Sci., 1992, 32(20), 1494

    Article  CAS  Google Scholar 

  9. Hanabata M., Furuta A., J. Vac. Sci. Technol., 1991, 9(2), 254

    Article  CAS  Google Scholar 

  10. Hanabata M., Uetani Y., Furuta A., J. Vac. Sci. Technol., 1989, 4, 640

    Article  Google Scholar 

  11. Hanabata M., Furuta A., Uemura Y., SPIE Advances in Resist Technology and Processing IV, 1987, 771, 85

    Article  CAS  Google Scholar 

  12. Hanabata M., Oi F., Furuta A., SPIE Advances in Resist Technology and Processing VIII, 1991, 1466, 132

    Article  CAS  Google Scholar 

  13. Yang G. Q., Xu J., Chen L., Wang S. Q., Li S. Y., Process for Preparation of Bisphenol Skeleton Derivatives as Molecular Glass Photoresist of Their Application., WO2013134997A1, 2013

    Google Scholar 

  14. Kudo H., Suyama Y., Oizumi H., J. Mater Chem., 2010, 20, 4445

    Article  CAS  Google Scholar 

  15. Mori H., Nomura E., Hosoda A., Macromol. Rapid Commun., 2006, 27, 1792

    Article  CAS  Google Scholar 

  16. Yoshiiwa M., Kageyama H., Shirota Y., Appl. Phys. Lett., 1996, 69, 2605

    Article  CAS  Google Scholar 

  17. Kadota T., Kageyama H., Wakaya F., Gamo K., Shirota Y., J. Photopolym. Sci. Technol., 1998, 11(1), 147

    Article  CAS  Google Scholar 

  18. Kadota T., Kageyama H., Wakaya F., J. Photopolym. Sci. Technol., 2000, 13, 203

    Article  CAS  Google Scholar 

  19. Kadota T., Kageyama H., Wakaya F., J. Photopolym. Sci. Technol., 1999, 12, 375

    Article  CAS  Google Scholar 

  20. Yamada A., Hattori S., Saito S., Pro. SPIE, 2010, 76390S/1

    Google Scholar 

  21. Pizarro F., Olivares M., Hertrampf E., Walter T., Arch. Latinoam. Nutr., 1994, 44, 277

    CAS  Google Scholar 

  22. Alina S., Beata K., Katarzyna L., Progress on Chemistry and Application of Chitin and Its Derivatives, 2014, 19, 135

    Article  Google Scholar 

  23. Shirota Y., J. Mater. Chem., 2005, 15, 75

    Article  CAS  Google Scholar 

  24. Yang D., Seung W. C., Ober C. K., J. Mater. Chem., 2006, 16, 1693

    Article  CAS  Google Scholar 

  25. Anuja D. S., Lee J. K., Ober C. K., Chem. Mater., 2008, 20, 1606

    Article  Google Scholar 

  26. Daniel B., Yang D., Ober C. K., Polym. Adv. Technol., 2006, 17, 94

    Article  Google Scholar 

  27. Oizumi H., Kumasaka F., Tanaka Y., Microelectron. Eng., 2006, 83, 1107

    Article  CAS  Google Scholar 

  28. Yu J. X., Xu N., Wei Q., Wang L. Y., J. Mater. Chem. C, 2013, 1, 1160

    Article  CAS  Google Scholar 

  29. Liu J., Liu Z. P., Wang L. Y., Sun H. Y., Chin. Sci. Bull., 2014, 59, 1097

    Article  CAS  Google Scholar 

  30. Yu J. X., Xu N., Liu Z. P., Wang L. Y., ACS Appl. Mater. Interfaces, 2012, 4, 2591

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyuan Wang.

Additional information

Supported by the National Basic Research Program of China(No.2013CBA01703) and the National Science and Technology Major Projects of China(No.2010ZX02303).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Q., Wang, L. Novel one-component positive-tone chemically amplified i-line molecular glass photoresist based on tannic acid. Chem. Res. Chin. Univ. 31, 585–589 (2015). https://doi.org/10.1007/s40242-015-5016-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-015-5016-3

Keywords

Navigation